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Abstract

In this work, we present measurements of γp→ K+Λ differential cross section and Λ recoil polariza-
tion from the CLAS g11a dataset. The measurements cover the center-of-mass energy range from
1.62 GeV to 2.84 GeV, expanding the observed range of this reaction by roughly 300 MeV. We have
analyzed this reaction via both the K+pπ− and K+p(π−) final state topologies independently and
found excellent agreement. The precision of these g11a measurements improves characterization of
this reaction and displays very good agreement with previous CLAS measurements.

A mass-independent partial wave analysis has also been performed using binned χ2 fits to g11a
differential cross section and recoil polarization results as well as previous CLAS g1c beam-recoil
polarization results. A model of non-resonant photoproduction has been assembled based upon the
t-channel K+, K∗(892), and K1(1270) exchange diagrams. We have found evidence of contributions
of the four-star S11(1650), P13(1720), and F15(1680) states to this reaction near threshold. In the√
s range 1.8 GeV to 2.0 GeV, the data shows evidence of the presence of multiple 3

2

+ states and a
single 1

2

− state at
√
s ≈ 1.92 GeV.
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Chapter 1

Introduction

The strong interaction is the term given to the physics which governs the dynamics of the fundamen-
tal constituents of most matter. Quantum Chromodynamics (QCD) is the theory that represents
physicists’ current understanding of the strong interaction as the attraction between quarks me-
diated by gluons. Among other phenomena, QCD dictates the binding of quarks into composite
particles called hadrons, of which the proton and neutron are the most abundant.

As a physical theory, QCD is quite attractive. Its elegance and compactness are æsthetically and
mathematically pleasing. More pleasing are the rich and complex physical phenomena which arise
from its compact form. As a predictive tool, QCD has had much success with hadrons composed
of higher-mass quarks and processes at very high energies. For such systems, perturbation theory
or effective potentials can be used to approximate the full QCD theory. However, QCD presents
enormous challenges when applied to more common hadrons and energies typical of nuclear physics
(a few GeV). Direct QCD calculations for systems such as the proton are beyond our current com-
putational ability. For this reason, specialized techniques and models have been developed which
allow calculations in this energy regime.

The goal of this analysis is to further investigate strong interaction phenomena in the non-
perturbative QCD regime. Specifically, we seek to characterize the physics by which a high-energy
photon (γ) and a proton (p) combine to create two different hadrons, the K+ meson and the Λ
baryon. We refer to this full reaction as γp → K+Λ. Using data from the CLAS experiment at
Jefferson Laboratory, we have measured characteristic observables of this reaction in the center-of-
mass energy range from 1.62 GeV to 2.84 GeV. We then use these measurements to interpret the
physical process by which the γp initial state becomes the K+Λ final state.

In this chapter, we discuss the motivation for our study of the γp→ K+Λ reaction. We discuss the
theoretical efforts, namely the Constituent Quark Model, to which our analysis is directly relevant.
We also discuss the results of past analyses, both experimental and theoretical, to demonstrate this
analysis’ contribution to the field of Nuclear Physics.

1.1 QCD and the Quark Model

Quantum Chromodynamics is a remarkable theory. It is elegant and powerful and gives rise to a
wealth of strong interaction phenomena. It does, however, present significant challenges in compu-
tation at energies typical of nuclear processes. In this section, we describe the theory through a brief
comparison to a more familiar theory, Quantum Electrodynamics. We review some of the tools that
have been developed to allow for predictive calculations, namely the relativized Constituent Quark
Model of Capstick and Roberts. These calculations present us with the Missing Baryons problem,
to which this analysis is directly related.

2
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Flavor I(JP ) Mass (MeV/c2) electric charge (e)

u - up 1
2 ( 1

2

+) 1.5 to 3.0 2/3
d - down 1

2 ( 1
2

+) 3 to 7 −1/3
s - strange 0( 1

2

+) 95±25 −1/3
c - charm 0( 1

2

+) 1250±90 2/3
b - bottom 0( 1

2

+) ≈4500 −1/3
t - top 0( 1

2

+) ≈175000 2/3

Table 1.1: Quantum numbers and masses of the six quark flavors are provided above. I, J , and P
denote isospin, spin, and parity quantum numbers. Masses are given in units of MeV/c2 and charge
in units of the electron charge.

1.1.1 Quantum Chromodynamics by Comparison

In order to understand the difficulties associated with applying Quantum Chromodynamics to cal-
culations at nuclear physics energies, we make comparison to a simpler and more familiar theory,
Quantum Electrodynamics (QED). QED describes the electromagnetic interaction between particles
which have electric charge. Interaction is mediated by a massless gauge particle, the photon (γ); i.e.
for two charged particles to interact, a photon is exchanged between them. At the most fundamental
scale, there are only two types of processes (called vertices) in QED: a charged particle can emit or
absorb a photon (see Figure 1.1). The probability with which a charged particle emits or absorbs
a photon, called the electromagnetic coupling for a given vertex, is small. From these two simple
vertices, any electromagnetic phenomenon can be understood by constructing all possible ways the
process can occur.

As an example, we consider the Coulomb interaction between two charged particles. Figure 1.1(b)
shows the simplest (tree-level) diagram representing this, i.e. exchange of a single photon. This
diagram is built of two vertices: e1 emits a photon and e2 absorbs the photon. The diagram in Figure
1.1(c) shows another, much more complicated way in which the interaction can proceed. Because
this diagram contains many more vertices, each of which has a small coupling, the overall probability
of this process is much smaller than the tree-level process. Because of this, QED calculations may
omit more complicated diagrams, and perturbation theory may be used to any desired level of
precision. QED is an amazing predictive tool, boasting agreement with experimental observation to
an accuracy of more than ten significant figures [1]. The electromagnetic interaction is responsible
for many composite systems in nature including atoms and molecules. Though the complexity of
these systems scales with the number of particles involved, QED is readily applicable to simple
systems, boasting predictive results such as the Lamb shift.

Similar to QED, Quantum Chromodynamics describes the strong interaction as the interaction
between fundamental fermions, called quarks, mediated by a massless gauge particle called the gluon.
There are six different flavors of quark, summarized in Table 1.1. In QCD, each quark and gluon
possesses an additional degree of freedom called color, an analog of electric charge in QED. Just
as in QED, QCD allows vertices in which a quark emits or absorbs a gluon. However, unlike the
electrically neutral photon of QED, the gluon carries the color charge of QCD, allowing for vertices
composed solely of gluons. Figure 1.1(d) shows the basic vertices of QCD.

Furthermore, the coupling at each QCD vertex is not necessarily a small constant; rather it is
energy-dependent and comparable to unity at low energies. Figures 1.1(e,f) show basic diagrams
which represent a strong interaction between two quarks. Figure (e) is the simplest process, whereas
Figure (f) represents a calculational mess. As for QED, we wish to calculate the bound states allowed
by the QCD theory. We know from experiment that quark-antiquark pair states, called mesons, exist
and include species such as the π− (du quark structure) and the D+ (cd). We are perhaps more
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(a) (b) (c)

(d)

(e) (f)

Figure 1.1: Figure (a) shows the possible QED vertex representing the emission or absorption of
a photon (wavy line) by the charged particle e (straight line). Figures (b) and (c) both represent
contributions to the Coulomb interaction between particles e1 and e2 composed of the vertex in (a).
The figures in (d) are those allowed by QCD: emission or absorption of a gluon by a quark and the
three- and four-gluon vertices. Figures (e) and (f) show diagrams representing strong interaction
between two quarks.
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familiar with three-quark states, called baryons, which include the proton (uud), neutron (udd), and
more exotic states such as the Ξ− (dss).

At high energies, where the QCD coupling is small, the more complicated diagram will have a
small probability relative to the basic diagram and can be ignored. These energies are commonly
referred to as the perturbative-QCD (pQCD) regime, as perturbation techniques can be applied.
QCD is also manageable for meson states composed of heavy quarks (e.g. the Υ (bb). Because the
large quark masses account for the majority of the total mass (energy) of the system, the quarks
can be seen as slow-moving, and a fully relativistic theory is unnecessary.

At lower energies, typically a few GeV, the QCD coupling is ≈ 1, and the more complicated
diagrams may have contributions equal to that of the basic diagram. In this, the non-pQCD regime,
perturbation techniques cannot be applied, and an infinite number of diagrams must be considered
in any true QCD calculation. Note that the masses of the up and down quarks, the principle
components of the proton, add to only ≈1% of the proton mass. This suggests the presence of
additional phenomena in the proton or highly-relativistic quarks (or both), which preclude many
model simplifications. Unfortunately, strongly-bound systems such as the proton and neutron fall
within this regime.

1.1.2 The QCD Spectrum

Because we cannot use QCD for calculations at nuclear physics energies, calculational tools and
models have been developed. In order to test these tools, however, specific features of the strong
interaction must be isolated that are accessible to both these tools and experiment. Perhaps the
most important of these features, the QCD spectrum, is the driving force behind this analysis and
the baryon spectroscopy studies at Jefferson Lab and other facilities.

In the late 18th and early 19th centuries, several experimentally physical observed phenomena
suggested the need for a new theoretical framework. Chief among these was the description of
atomic spectra. It had been observed that the light emitted by atoms due to electronic de-excitation
(transition from a higher-energy state to a lower-energy state) came only at certain wavelengths
(energies) dependent upon the type of element. Classical theory could not provide justification for
this, as it predicted a continuous spectrum of energy states corresponding to a continuous photon
energy spectrum. Various theories were postulated, but no satisfying theory of the atom was given
until Niels Bohr’s 1913 introduction of the Bohr Model [3]. This model proposed that only discrete
values of the orbital angular momentum of the atomic system (an thus the atomic energy states)
were allowed, a model which described the hydrogen spectrum quite well. This and other phenomena
showed the need for a theory describing the quantized nature of physics at the microscopic scale. In
1925, such a framework, Quantum Mechanics, was conceived.

A similar approach is taken with QCD in the non-perturbative regime. Analogous to the atomic
spectrum created by the electromagnetic force, the strong interaction dictates the formation of
a multitude of bound states. Whereas the nature of an excited atomic state is (in retrospect)
fairly obvious, the highly-nonlinear nature of QCD obfuscates the nature of baryon excitation. It
is believed that excitation could be the result of the dynamics of the three main quarks, gluons,
or quark-antiquark pairs (or combinations of the three). With the laws of Quantum Mechanics in
hand, we know that excited baryon states, called N∗ states, should exist at discrete intervals. Indeed,
observation confirms this. Figure 1.2 shows the baryon spectrum as revealed in the scattering of
π mesons on the proton. It is important to note that these experiments considered only πN final
states; that is they require that an N∗ can decay to a pion and nucleon to be detected. From
observation of these states, models have been created which attempt to approximate the full QCD
theory.
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Figure 1.2: Shown above are the total cross sections from πp scattering experiments. The enhance-
ments in σ are labeled with N∗ states that are given a four-star (“existence is certain”) rating by
the PDG [5]. (Image source: [4].)

1.1.3 The Constituent Quark Model and the Missing Baryons Problem

One such model that has found some predictive success is the Constituent Quark Model (CQM). In
this model, only the three main quarks, called the valence quarks, of a baryon state are considered.
Excitations are the result of radial displacements or angular momentum of these quarks. In this
simplified picture, calculations are possible. Table 1.2 lists the N∗ states predicted by the CQM
calculations of Capstick and Roberts [2], as well as the experimentally observed states. These
particular calculations utilize relativized wavefunctions, though the calculations are not performed
in a fully coviariant framework.

Note that the ratio of the number of states predicted by the CQM to the number of observed
states is roughly 4:1. This disparity is called The Missing Baryons Problem and is the primary
theoretical motivation for our analysis. Several possible explanations for this mismatch have been
proposed. Central to this analysis is the hypothesis that, for reasons hidden to us by the complexity
of QCD, not all N∗ states can be created by (couple to) the πN system. Until recent years, the vast
majority of data on N∗ resonances has been from πN scattering and detection of πN final states.
However, experiments have shown production of some N∗ in γp scattering and decays to several
other hadronic final states. By fully investigating the possible photoproduction and decay of N∗

states to other channels, we test the CQM and learn more about the physics allowed by QCD.

1.2 The K+ and Λ Hadrons

For this analysis, we have probed the structure of the proton using a high-energy beam of photons.
In order to observe this physics, however, we must detect a useful set of final state particles. Our
choice to examine the K+Λ final state is motivated by several factors. First, this final state is easily
identifiable with the CLAS detector and allows for easy control of background. In addition, non-zero
couplings of N∗ states to K+Λ have been predicted [6] and observed in previous experiments [5].
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JP MCQM MPDG Rating JP MCQM MPDG Rating
1/2− 1460 1535 **** 1/2+ 1540 1440 ****
1/2− 1535 1650 **** 1/2+ 1770 1710 ***
1/2− 1945 2090 * 1/2+ 1880
1/2− 2030 1/2+ 1975
1/2− 2070 1/2+ 2065 2100 *
1/2− 2145 1/2+ 2210
1/2− 2195
3/2− 1495 1520 **** 3/2+ 1795 1720 ****
3/2− 1625 1700 *** 3/2+ 1870
3/2− 1960 2080 ** 3/2+ 1910
3/2− 2055 3/2+ 1950
3/2− 2095 3/2+ 2030
3/2− 2165
3/2− 2180
5/2− 1630 1675 **** 5/2+ 1770 1680 ****
5/2− 2080 5/2+ 1980 2000 **
5/2− 2095 2200 ** 5/2+ 1995
5/2− 2180
5/2− 2235
5/2− 2260
5/2− 2295
5/2− 2305
7/2− 2090 2190 **** 7/2+ 2000 1990 **
7/2− 2205 7/2+ 2390
7/2− 2255 7/2+ 2410
7/2− 2305 7/2+ 2455
7/2− 2355
9/2− 2215 2250 **** 9/2+ 2345 2220 ****
11/2− 2600 2600 ***
11/2− 2670
11/2− 2700
11/2− 2770
13/2− 2715

Table 1.2: The table above gives predicted N∗ states from the Constituent Quark Model calculations
of Capstick and Roberts [2], as well as the associated observed states reported by the PDG. All
masses are given in units of MeV/c2.
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Hadron I(JP ) Mass Charge (e) Valence quarks Decay mode cτ

K+ 1
2 (0−) 493.677 MeV/c2 +1 us µ+νµ (63%) 3.713 m

Λ 0( 1
2

+) 1.115683 GeV/c2 0 uds pπ− (63%) 7.89 cm

Table 1.3: Characteristics of K+ and Λ hadrons [5]. Here, I, J , and P denote isospin, spin, and
parity quantum numbers. Only the most prevalent decay modes are listed.

We gain access to the physics of excited nucleon photoproduction by analyzing events with a
K+ meson and Λ baryon in the final state. The K+ is pseudo-scalar meson composed of us valence
quarks and has a mass of 493.677 MeV/c2. The Λ is a electrically-neutral baryon composed of uds
valance quarks and has a mass of 1.115683 GeV/c2. The full quantum numbers of both particles are
summarized in Table 1.3. It is important for the purposes of this analysis to note that the isospin
quantum numbers of the K+ and Λ are 1

2 and 0, respectively. Thus, the K+Λ final state has a total
isospin of 1

2 and can not couple to the ∆ resonances with I = 3
2 . Thus, we call the K+Λ final state

an isospin-filter.
It is also worth commenting that K+ and Λ are the lowest-mass meson and baryon with non-

zero strangeness. As the strong interaction preserves strangeness conservation, the decays of these
hadrons are mediated by the weak interaction. Thus, the particles are relatively long-lived on the
scale of nuclear physics. The K+ has cτ = 3.713 m, making its direct observation with our detector
possible. The Λ has cτ = 7.89 cm, a scale smaller than most of our detector components. In light
of this, our analysis detects the daughter particles of the Λ’s main decay mode, Λ → pπ−.

1.3 γp → K+Λ Observables

By considering spin states of the involved particles, we see that the γp → K+Λ reaction is fully
described by 2 × 2 × 2 = 8 complex helicity amplitudes. Parity invariance constraints reduce this
number to 4 independent amplitudes. The pseudo-scalar nature of the K+ meson simplifies study of
this reaction: characterization of these amplitudes depends upon measurement of differential cross
sections as well as seven single- and double-polarization observables. The single-polarization observ-
ables T , Σ, and PΛ are the beam and target asymmetries and the Λ recoil polarization, respectively.
The double-polarization observables are the beam-recoil polarization transfers denoted by Cx and
Cz for circularly-polarized photons and Ox and Oz for linearly-polarized photons (subscripts rep-
resent the in-scattering-plane axes). Due to the self-analyzing nature of the predominant Λ decay
mode, measurement of these polarization observables is simpler than in other reactions. As a result
of this, world data on the K+Λ reaction are relatively extensive and are quickly becoming complete
for energies in the resonance region.

For this analysis, we have used an unpolarized photon beam to catalyze the γp→ K+Λ reaction,
allowing observation of the differential cross section and Λ recoil polarization. We have observed
the reaction in a large range of center-of-mass production angles at center-of-mass energies in the
range 1.62 GeV to 2.84 GeV. Measurements of the differential cross section and PΛ were produced
at 2076 and 1715 (cos θCM ,

√
s) points, respectively.

1.4 Previous Analyses of γp → K+Λ

At the time of this analysis, the g11a dataset is by far the world’s largest dataset for strangeness
photoproduction in the resonance region. Several good measurements of the differential cross section
and recoil polarization have been made in the past. In this section, we comment on these and show
the necessity of our measurement.



CHAPTER 1. INTRODUCTION 9

1.4.1 Differential Cross Section Measurements

Experiments have produced measurements of the differential cross section for the γp→ K+Λ reaction
from as far in the past as 1957. We choose to separate these into three groups: studies performed
before 1973, modern large-acceptance experiments, and modern limited-acceptance experiments.
Below we examine each of these groups and comment on the contribution of our analysis to world
data. The five sets of previous analyses considered in this section are plotted together in Figures
1.3-1.5.

Pre-1973 Studies

The experiments performed in the years prior to 1973 produced measurements at a total of 144
(cos θK

CM ,
√
s) points. The results of these studies are summarized nicely in [7]. These measurements

represent the center-of-mass energy range from threshold to
√
s ≈ 1.91 GeV with a wide sampling

of production angle. Figures 1.3-1.5 show these data present a large amount of scatter and generally
large uncertainties. Relative to more modern, higher-statistics datasets, these results seem sparse.
As little interpretation of the physics of K+Λ photoproduction can be done with these results alone,
we include them here to demonstrate how far experimental technique has progressed in the past
decades.

Modern Large-Acceptance Experiments: CLAS and SAPHIR

In recent years, measurements of the differential cross section have been made by the CLAS and
SAPHIR collaborations. These measurements are very interesting as they provide the first charac-
terization of the process over a wide

√
s and angular range. More importantly, these results enabled

several partial wave analyses of the reaction. At the time of this analysis, large discrepancies existed
between results from the two experiments.

SAPHIR is a large-acceptance magnetic spectrometer at the Electron Stretcher Accelerator fa-
cility at the University of Bonn, Germany. The SAPHIR Collaboration published three separate
studies of the differential cross section in 1994 (Bockhorst et al. [8]), 1998 (Tran et al. [9]), and most
recently in 2004 (Glander et al. [10]). Here, we discuss only the most recent results as they are the
most precise and represent the largest kinematic range. The 2004 results are formed from data taken
in 1997-1998 representing a total of 51977 K+Λ data events. These results span the center-of-mass
energy range from threshold to

√
s ≈ 2.4 GeV. The data were separated into 50-MeV-wide bins

in photon energy and 0.1-unit-wide bins in cos θCM . These results are plotted in Figures 1.3-1.5.
Compared to the pre-1973 results, the SAPHIR results present an amazing gain in information. The
results show trends of the differential cross section in production angle as well as

√
s. As such, these

results were suitable for partial wave analyses of this reaction.
In 2005, the CLAS Collaboration published differential cross section results (Bradford et al. [11])

from two separate analyses, those of J. McNabb [12] and R. K. Bradford [13]. These results were
from the CLAS g1c dataset collected in late 1999 from which ≈ 5.6×105 K+Λ events were selected.
The data were separated into 10-MeV-wide bins in photon energy and give coverage in

√
s from

threshold to 2.53 GeV. Due to the increased statistics, the CLAS results provide a much smoother
description of the reaction than the SAPHIR results, as well as an extension of the observed

√
s

range by roughly 100 MeV.
Agreement between the two results is quite good for center-of-mass energies below 1.8 GeV.

However, several troubling discrepancies exist at higher
√
s values. The most noticeable of these

is the overall scale discrepancy; though the SAPHIR error bars are relatively large, the CLAS
results are ≈ 20% higher than those of SAPHIR for forward angles. The CLAS results also exhibit
interesting shape at

√
s ≈ 1.9 GeV, whereas the SAPHIR results do not. We see that for intermediate

angles (-0.15≤ cos θK
CM <0.15), the CLAS results show a large enhancement in the differential cross

section in the range 1.8 GeV≤
√
s <1.95 GeV. This same feature is present in the CLAS data at
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Figure 1.3: Shown above are previous measurements of the γp → K+Λ differential cross section at
backward angles. Each plot displays data in a 0.1-unit-wide cos θCM range versus

√
s. The legend

at top left indicates the convention for all plots.
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Figure 1.4: Shown above are previous measurements of the γp → K+Λ differential cross section at
middle angles. Each plot displays data in a 0.1-unit-wide cos θCM range versus

√
s. The legend at

top left indicates the convention for all plots.
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Figure 1.5: Shown above are previous measurements of the γp → K+Λ differential cross section at
forward angles. Each plot displays data in a 0.1-unit-wide cos θCM range versus

√
s. The legend at

top left indicates the convention for all plots.



CHAPTER 1. INTRODUCTION 13

extreme forward and backward angles where the SAPHIR results once again do not show as much
enhancement. Confirmation of this feature in the differential cross section is very important, as this
type of structure is indicative of resonance production. As a result of the disparity between these
measurements, previous partial wave analysis findings have been dependent upon the dataset used.
Goals of our analysis include, but are not limited to, investigating the presence of the enhancement
at
√
s = 1.9 GeV and resolving the scale discrepancy between these two experiments.

Modern Limited-Acceptance Measurements: LEPS

The LEPS experiment at the Spring-8 facility in Hyogo, Japan, has also produced measurements
of the γp → K+Λ differential cross section at very forward (Sumihama et al., 2006 [14]) and very
backward (Hicks et al., 2007 [15]) production angles. Though they add relatively few points to the
world data on γp→ K+Λ, the LEPS measurements at forward and backward angles are important
as the large-acceptance experiments (CLAS especially) cannot provide adequate acceptance at these
angles. For the backward angle measurement, data were separated into two 0.1-unit-wide bins in
cos θCM in the range -1.0≤ cos θK

CM <-0.8 and six equal-width energy bins covering the
√
s range

from ≈1.92 GeV to ≈2.31 GeV. Of these measurements, only the more forward angular bins overlap
with the previous CLAS and SAPHIR results. These results align very well with the previous CLAS
measurements in this angular range, corroborating the scale of the CLAS measurement.

The forward-angle LEPS measurement represents three cos θK
CM bins in the range 0.7≤ cos θK

CM <1.0
and 18 bins in the energy range 1.92 GeV≤

√
s <2.31 GeV. Here, comparison to the previous CLAS

and SAPHIR results shows some discrepancy. The SAPHIR results show a more dramatic down-
ward trend in

√
s than the large-acceptance results. The LEPS results match the enhancement in

the CLAS differential cross section at
√
s = 1.95 GeV, but for

√
s >2.15 GeV they show a steeper

decrease with increasing
√
s. When comparing the g11a results in Chapter 6, we consider the the

LEPS measurements where these discrepancies exist.

1.4.2 Λ Recoil Polarization

As discussed above, the self-analyzing nature of the Λ → pπ− decay allows for extraction of the Λ
spin polarization. Figures 1.6 and 1.7 show these results in bins of center-of-mass production angle
versus

√
s. Measurements of the single-polarization observable, PΛ, have been made beginning in

the early 1960’s. As with the differential cross section data, experiments between 1960 and 1978
produced limited results; by 1978, the world data for the Λ recoil polarization included measurements
at only 27 values of (

√
s, cos θCM ), which can be found in [16, 17, 18, 19, 20, 21]. The majority of

these points are for middle production angles and in the region
√
s < 1.76 GeV. We omit these

points from Figures 1.6 and 1.7 as they present a considerable amount of scatter, and comparison
with the more modern data is not particularly enlightening.

More recent measurements of PΛ have been made with high-statistics datasets from the CLAS,
SAPHIR, and GRAAL collaborations. In the same publication as their 2004 differential cross section
measurements [10], the SAPHIR Collaboration published PΛ measurements at 30 kinematic values.
These measurements stretched the statistics to their limits, and consequently, the uncertainty in

√
s

associated with each point is sizable.
The CLAS Collaboration published measurements of the recoil polarization in 2004 [22] which

were taken from the g1c dataset. These measurements considered only the lower-beam energy
production run, limiting results to the range

√
s < 2.3 GeV. The roughly 3×105 data were separated

into 0.2-unit-wide cos θCM bins and, in most cases, 50-MeV-wide bins in photon energy. In some
regions of phase-space, energy binning was coarser to bolster statistics for each point. At backward
angles, the SAPHIR and CLAS results show fair agreement; error bars are large enough to account for
discrepancies in most regions. At extreme forward angles, however, there is a notable discrepancy
between the two results; the SAPHIR results show a more negative polarization than the CLAS
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Figure 1.6: Shown above are PΛ results from previous analyses of γp → K+Λ at backward and
middle production angles. Each plot represents data in the 0.2-unit-wide cos θK

CM range indicated.
Marker convention is given at top left and is the same for all plots.
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Figure 1.7: Shown above are PΛ results from previous analyses of γp→ K+Λ at forward production
angles. Each plot represents data in the 0.2-unit-wide cos θK

CM range indicated. Marker convention
is given at top left and is the same for all plots.
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results in the
√
s range 1.8 GeV to 2.05 GeV. Because of the coarseness of the SAPHIR data,

we cannot use comparison to discern whether interesting shapes in the CLAS results (e.g.
√
s =

2.05 GeV and forward angles) are attributable to physics or statistical variance.
Very recently, the collaboration at the GRAAL facility in Grenoble, France, published recoil

polarization measurements at 65 kinematic points [23]. Binning in energy is roughly equal to that
of the CLAS result (≈ 50 MeV in photon energy), and measurements were taken at six fixed lab
production angles yielding center-of-mass angles of roughly 35◦, 60◦, 80◦, 100◦, 120◦, and 140◦.
Though these results occupy a smaller range of

√
s (< 1.91 GeV) than the CLAS and SAPHIR

data, they offer a satisfying amount of consistency. With comparisons to these data, we are able
to scrutinize the CLAS measurements. We see that at forward production angles, where the CLAS
data shows a significant amount of fluctuation, the GRAAL results are smooth and agree well with
the SAPHIR data. Agreement between the three results is good in other kinematic regions.

1.5 The Call for a g11a Measurement

Of course, the mere existence of the g11a dataset does not warrant an additional study of γp→ K+Λ
reaction. However, in light of the discrepancies we have described above, our g11a measurements
add much to the world data. Our measurement is the most precise to date, boasting the finest

√
s

binning and experimental uncertainties equal to, and in many regions smaller than, those of the
previous CLAS measurements. This refinement of characterization of the reaction will lead to more
accurate interpretation via partial wave analyses. There are also several specific issues which we
seek to address with our measurements. The discrepancy in scale between the previous CLAS and
SAPHIR differential cross section results is troubling. Though our analysis uses the same detector
as the previous CLAS results, the run conditions and analysis methods are distinct enough that we
may confirm the previous results. We also seek to investigate the enhancement of the differential
cross section at

√
s ≈ 1.9 GeV. The results of previous analyses of excited nucleon resonances in this

reaction have depended strongly upon which differential cross section data is considered. Finally,
the energy range covered by the g11a dataset will allow for characterization of the reaction in a√
s region which is dominated by non-resonant processes, yet not far-removed from the resonance

region. Our results in the range 2.6 GeV≤
√
s <2.84 GeV will certainly shed new light on theoretical

treatments of non-resonant production.

1.6 Previous Partial Wave Analyses

Because polarization measurements for the γp → K+Λ reaction are so readily available, various
partial wave analyses of this channel have been performed. Before we discuss the N∗ resonance
results of these analyses, however, it is important to discuss the non-resonant terms used in various
models. Unlike other reactions, such as γp → pω, there is no clear choice of t- and u-channel
(non-resonant) processes for strangeness production. Furthermore, coupling constants associated
with many of the vertices of possible non-resonant diagrams (e.g. the K+pΛ coupling) have not
been directly observed, adding more uncertainty to models. In the absence of a clear non-resonant
picture, two major model types have been developed.

The isobar models, most notably of Thom [24] and Mart and Bennhold [25, 26], characterize the
non-resonant contributions to K+Λ photoproduction via effective Lagrangian Feynman diagrams
describing t- and u-channel exchanges. Mechanisms typically considered are shown in Figure 1.8.
The diagrams included in analyses are varied. Most isobar analyses contain at least the diagrams
called the Born terms: the s-channel proton exchange, t-channel K+ exchange, and u-channel Λ
exchange. In any analysis, however, even these most basic diagrams are given free coupling constant
and form-factor parameters, as these values are not experimentally measured. Inclusion of further
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Figure 1.8: Shown above are the Feynman diagrams typical of isobar models (for example [24] or
[25]). The top row shows (from left to right) the non-resonant s-, t-, and u-channel diagrams. The
diagram at bottom shows s-channel production through an excited nucleon state.

diagrams, such as the u-channel excited hyperon exchanges (Λ(1405) and Σ(1385)) of [27] has also
shown interesting results.

A second method, investigated principally by the group at Ghent [28] and Guidal, Laget, and
Vanderhaeghen [29], has been to model the t-channel exchange of strange mesons with Regge prop-
agators rather than Feynman propagators. The Regge propagator is an elegant technique which
describes the exchange of an entire family of particles characterized by the same quantum num-
bers but different spins (J). In this method, exchanges of high-J mesons likely to occur at high
center-of-mass energies are considered. As such, Regge model builders have found it necessary to
use high-energy data (Eγ ≈ 16 GeV [30]) as constraints. We note that prior to this analysis, all
world data for K+Λ photoproduction in the resonance region has been at

√
s ≤ 2.53 GeV. At these

energies there is no way of safely separating resonant and non-resonant production mechanisms.
Thus, previous partial wave analyses have fit all processes simultaneously and found varying results
for non-resonant production based on the resonant structures included [28].

We now present the results of several recent partial wave analyses of the γp → K+Λ reaction.
The analysis of Mart and Bennhold [25] applied the tree-level isobar model to SAPHIR differential
cross section data and found contributions of the S11(1650), P11(1710), and P13(1720) states as well
as evidence for the existence of a “missing” D13 state at 1894 MeV. This analysis has been developed
into the Kaon-MAID code, available at [31]. It was then shown in both [32] and [33] that features
in the SAPHIR data at

√
s ≈1.9 GeV could be described by tuning non-resonant models and the

need for a missing state was ambiguous. Further analysis of this data showed that a missing state
in this energy range could help to explain the data, but its quantum numbers were not constrained
by the data. An analysis [34] of early SAPHIR and CLAS data as well as πN scattering data found
contributions S11(1650), P13(1720), and P13(1895) states. From these varied results, it is apparent
that these early data were not enough to provide conclusive results.

There have also been analyses since the publication of the 2004 CLAS recoil polarization and
later CLAS differential cross section measurements. The 2006 analysis from the Ghent group [28] an-
alyzed forward-angle data in a Regge-plus-resonance approach and found evidence for the S11(1650),
P11(1710), and P13(1720) states near threshold and P13 and P11 states at 1.9 GeV. In a dynamical
coupled-channel analysis with the γp→ pη, Juliá-Dı́az et al. [35] found the need for an S11 state at√
s ≈ 1.9 GeV. Most recently, a coupled channel analysis by Sarantsev, et al. [36] showed evidence

of the coupling of the S11(1535), S11(1650), and P13(1720) to K+Λ at threshold. Evidence for newly



CHAPTER 1. INTRODUCTION 18

observed P11(1840) and D13(2170) states was found.
The lack of consistency in partial wave analysis results is not due to a lack of effort. These analyses

represent great ingenuity and dedication to the field. We remind the reader that five N∗ states have
been observed to couple to this channel near threshold [5]. Performing a partial-wave analysis in
such a region where many partial waves may contribute is extremely difficult and requires data of
high precision. As a more accurate picture of non-resonant production mechanisms is assembled
and more polarization measurements performed, results should converge. We are fortunate that an
easily analyzable channel such as K+Λ seems to provide so much resonant contribution.

1.7 Summary

The self-analyzing nature of the Λ → pπ− decay and the relatively simple spin structure of the
γp → K+Λ reaction make it an excellent candidate for searches for excited nucleon intermediate
states. As a clearer picture of the full excited nucleon spectrum is formed, the accuracy of the
Constituent Quark Model can be truly evaluated and the contribution of other degrees of freedom
to QCD can be assessed. Experiments performed in the last fifteen years have added a great deal of
data to our knowledge of this reaction, but inconclusive and inconsistent partial wave analysis results
suggest that more precise measurements are needed. In Chapter 6, we present our high-precision
measurement of the γp → K+Λ differential cross section and recoil polarization. In Chapter 8, we
use these measurements in a mass-independent partial wave analysis in search of N∗ states.



Chapter 2

Thomas Jefferson National
Accelerator Facility and the CLAS
Detector

This analysis focuses on the g11a dataset collected in Experimental Hall B of the Thomas Jefferson
National Accelerator Facility (TJNAF, JLab) in Newport News, Virginia. Though this analysis
investigates the γp→ K+Λ reaction, it should be noted that the g11a dataset was initially intended
for another purpose. The data were collected in the Summer of 2004 as a part of the E04021 exper-
iment (Spectroscopy of Excited Baryons with CLAS: Search for Ground and First Excited States), a
high-statistics search for the Θ+ pentaquark [37]. The run employed a loose trigger which allowed
acquisition of final states that were not candidates for Θ+ production. At the time of its collection,
g11a was the world’s largest dataset for many photoproduction reactions in the non-pQCD energy
regime.

The g11a run conditions called for a tagged photon beam incident on a liquid Hydrogen target.
The CEBAF Large Acceptance Spectrometer (CLAS) Detector was used to observe multi-particle
final states with roughly 60% coverage of the full 4π solid angle. All of the g11a runs included in
this analysis were produced with bremsstrahlung from a 4.023 GeV electron beam incident on a
gold foil. The CLAS tagger hodoscope allowed measurement of photons with energies between 20%
and 95% of the beam energy, producing data with center-of-mass energies between 1.55 GeV and
2.84 GeV. In its entirety, g11a is comprised of ≈20 billion triggers stored as 21 TB of raw data.

This chapter provides detail of the experimental setup including CEBAF, the Hall B tagger, the
CLAS detector, and triggering.

2.1 Continuous Electron Beam Accelerator Facility (CEBAF)

The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson laboratory is a 6.023 GeV
end-point energy electron accelerator designed to deliver electron beam to each of JLab’s three
experimental halls. An aerial view of JLab is displayed in Figure 2.1. CEBAF is set apart from
previous electromagnetic probes (SLAC, DESY, etc.) in its use of superconducting radio-frequency
(RF) cavities for electron acceleration. The superconducting nature of the cavities provides two
benefits to the overall acceleration: (1) the accelerator is more efficient as no energy is lost by
electrons in the cavities, and (2) the non-resistive transmission of electrons through the cavities
does not raise the cavities’ temperature. The second of these features allows CEBAF to attain a
100% duty factor, as no down-time needs to be devoted to cooling the conducting elements of the

19
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Figure 2.1: An aerial view of CEBAF. The accelerator ring lies underneath the “racetrack”-shaped
figure in the top half of the picture. The experimental halls are underneath the three grassy knolls
at the bottom of the picture. The CLAS detector is housed in Hall B, the middle hall. Image source:
[38].

accelerator. This continuous delivery of electrons to the experimental halls allows for high data rates
even at low beam currents, conditions ideal for coincidence experiments.

The injector is the source of CEBAF’s electron beam. Free electrons are produced by three
lasers (one for each experimental hall), independently pulsed at 499 MHz, incident on a GaAs
photocathode. Use of three separate lasers allows for independent tuning of beam characteristics
(current, polarization) for each experimental hall. The three lasers are pulsed 120◦ out of phase,
giving the accelerator an overall frequency of 1497 MHz, with each experimental hall receiving
electron bunches at 2 ns intervals. The electron bunches are then accelerated to 45 MeV via 2 1/4
RF cavities [39]. To insure that the three interleaved beams will be independently accessible, the
electron bunches are cleanly separated using an optical chopper before being injected into the main
accelerator.

CEBAF’s main physics machine is a 7/8-mile recirculating “racetrack”-shaped accelerator ring.
The accelerator’s power lies in the 168 superconducting RF cavities in each of two parallel Linear
Accelerators (LINACs). Recirculation is facilitated by bending magnets in the curved portions of
the tracks (see Figure 2.2); electrons may pass through the pair of LINACs up to five times before
being diverted to one of the experimental halls. A pass through each of the LINACs adds 600 MeV
to the beam energy; the maximum energy attainable by the full five passes through the loop is
6 GeV. The 168 RF cavities in each of the LINACs are grouped into 20 cryomodules, which cool the
cavities by immersion in liquid helium to a temperature of 2 K. At this temperature, the cavities are
well within the superconducting regime of niobium [41] and thus transmit electrons non-resistively.
A photograph of a typical superconducting RF cavity is provided in Figure 2.3. The accelerating
gradient is produced by generating 1497 MHz standing RF waves in the cavities. The phase of
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Figure 2.2: A schematic diagram of the Continuous Electron Beam Accelerator Facility. Shown in red
are the LINACs composed of 168 (each) superconducting RF cavities grouped into 20 cryomodules.
At top right is an exploded view of the recirculation arcs showing the five separate magnet assemblies
for up to five beam passes. Experimental halls are shown at lower left. Image source: [40].

Figure 2.3: A picture of a superconducting RF cavity. Shown above is a pair of superconducting
niobium RF cavities. The cavities are the innermost component characterized by the elliptical bulges
perpendicular to the beam line. Image source: [38].
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Figure 2.4: A schematic diagram of the superconducting RF cavity. Accelerating fields are estab-
lished by charge accumulated on the inner tangs of the RF cavity (shown in diagram). These excess
charges are the result of standing RF waves in the cavity. The phase of the waves follows the position
of the electron bunch in the cavity, ensuring a positive force on the electrons at all times. Image
source: [38].

the waves are matched to the electron bunches, creating a positive electric force on the electron
bunches at all times (see Figure 2.4) [39]. Each RF cavity is independently instrumented to grant
the accelerator a high degree of tunability.

Once a beam bucket has passed through the accelerator ring the desired number of times, it
can be separated from the other two beams and sent to one of three experimental halls. At the
end of the south LINAC (see Figure 2.2), the three beams are fanned out according to their energy
before being sent to the accelerator ring’s bending magnets. RF separator cavities make use of
the 120◦ to divert specific electron bunches to a desired hall [39]. This feature allows Jefferson
Laboratory to perform experiments requiring different beam energies and currents simultaneously.
Though CEBAF is capable of delivering maximum energy (6 GeV) beam to Halls A, B, and C
simultaneously, it cannot provide two halls with a single lower energy.

2.2 The Hall B Photon Tagger

For photoproduction experiments, the CEBAF electron beam is converted into bremsstrahlung pho-
tons via a gold foil radiator. The high atomic number and density of gold make it an excellent
catalyst for the ebeam + Au → e′beam + Au′ + γbremsstrahlung reaction. Because the bremsstrahlung
photons produced are not mono-energetic, Hall B is equipped with a powerful photon tagger that
uses a large magnetic spectrometer to measure the energy of recoiling beam electrons. The energy
of the bremsstrahlung photon is then calculated from energy conservation. A schematic diagram of
the Hall B photon tagging system is given in Figure 2.5.

2.2.1 Radiator

Several different radiator foils are available for conversion of electron beam into bremsstrahlung
photons in Hall B. For the g11a data-taking runs, the thickest of these was used, a gold foil with a
thickness of 10−4 radiation lengths (646µg/cm2). A thinner foil (10−5 radiation lengths) was used
for “normalization runs” which are not included in this analysis.
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Figure 2.5: A schematic diagram of the Hall B photon tagging system. The Hall B photon tagger al-
lows indirect measurement of photon energy. The energy of a recoil beam electron is measured by the
tagger spectrometer (tagger magnet and hodoscope). The energy of the associated bremsstrahlung
photon is then ascertained from energy conservation. The bremsstrahlung beam is then collimated
and passed to the CLAS detector. Image source: [42].

2.2.2 Magnetic Spectrometer

The Hall B photon tagging system is a magnetic spectrometer designed to measure the energy of the
recoiling electrons directly after interaction in the radiator. The photon tagger uses a 1.75T max-
imum field, normal-conducting dipole magnet to bend both recoiling and non-interacting electrons
out of the beamline. Those electrons which did not interact with the radiator (and thus have an
energy equal to the beam energy) are bent out of the beam line and discarded in the beam dump.
Recoiling electrons (those that did interact with the radiator) are bent into the two hodoscope
planes below the tagger magnet. Though the tagger magnet was designed to provide a resolution of
2× 10−4 ×Ebeam, the ultimate resolution of the tagger spectrometer is limited to 10−3 ×Ebeam by
the hodoscope resolution. The tagger’s magnetic field is engineered to redirect recoil electrons with
energies between 20% and 95% of the beam energy into the hodoscope.

The tagger hodoscope is comprised of two planes of scintillator detectors, each with a different
purpose. The top plane consists of 384 thin scintillator paddles which determine the momentum
of the recoiling electron (this plane is referred to as the E-plane). These E-plane scintillators are
20 cm long, 4 mm thick, range in width from 8 cm to 16 cm. The thinness of the scintillators
makes energy lost by electrons as they pass through the material small. To give the effect of further
segmentation and thus better resolution, the scintillators are arranged in an overlapping formation.
The scintillator overlap increases the effective number of E-counters to 767 for an energy resolution
of ≈ 10−3×Ebeam. The lower scintillator plane determines precise timing information of the recoiling
electrons (hence called the T-plane). The T-plane lies 20 cm below the E-plane and is made up of 61
scintillators (T-counters). The T-counters are 2 cm thick which results in a timing resolution of 110
ps. All scintillators in both the T and E-planes are arranged so that electron trajectories are normal
to their surfaces. A detailed schematic of the tagger magnet and hodoscope is given in Figure 2.6.
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Figure 2.6: A schematic diagram of the Hall B tagger magnet and hodoscope. Dashed lines show
the trajectories of recoil electrons associated with photons of given energies (E0 is the beam energy).
The photon tagger detects recoil electrons with energies between 0.2×E0 and 0.95×E0. E-counters
cannot be seen individually because of their fine segmentation. Image source: [42].

2.2.3 Tagger Readout and Logic

E-counter scintillators are each instrumented with with a single photomultiplier tube (PMT), the
signals of which are passed to a discriminator. T-counter scintillators are instrumented with a PMT
at each end feeding a constant fraction discriminator (CFD). T-counter signals that pass the CFD
are sent to a Master Or (MOR) and a time-to-digital converter (TDC) array. The TDCs allow access
to precise timing information for each T-plane hit as well as the total number of hits recorded in the
tagger. The total number of recoil electron hits in the tagger allows calculation of energy-dependent
photon flux. The timing information of individual electrons is used to associate events recorded by
the detector with individual photons during offline analysis. The T-counter MOR is used to set the
g11a event trigger which then sends a stop signal to the E-counter TDC array. E-counter readout
associated with this trigger is then written to the data stream along with T-counter readout that
set the trigger. A schematic of the Hall B tagger logic is provided in Figure 2.7.

Before reaching the CLAS detector, the produced photon beam passes through three collimators.
Any charged particles created by interaction of the photon beam and collimators are removed from
the beamline by two sweep magnets placed between the collimators. A more detailed exposition of
the Hall B Photon Tagger can be found in [42].

2.3 The CLAS Detector

The main physics detector in Experimental Hall B is the CEBAF Large Acceptance Spectrometer
(CLAS) Detector. CLAS is comprosed of several detector subsystems, not all of which are useful for
every experiment. The g11a run period used the start counter, drift chambers, time-of-flight scin-
tillators, and toroidal magnet, as well as a g11a-specific physics target. These detector components
that were used for the g11a production run will be described in greater detail below. A photograph
and schematic drawing of the CLAS detector are given in Figures 2.8 and 2.9.

It is worth mentioning that CLAS has two other detector subsystems that are used primarily for
electroproduction experiments. CLAS has a gas C̆erenkov detector that is composed of 216 optical
modules. In electroproduction experiments, the gas C̆erenkov detector is used to distinguish recoil
electron tracks from π tracks produced in the target [43]. CLAS is also equipped with forward
electromagnetic lead-scintillator calorimeters (EC) that are used primarily for electroproduction
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Figure 2.7: A schematic diagram of the Tagger instrumentation logic. Individual T- and E-counters
are shown on the left-side of the diagram. T-counter hits are used to set the event trigger. The
CLAS Level 1 trigger then provides a common stop to the E-counter TDC array. Image source: [42].

experiments. The EC serves several purposes including functioning as the main electron trigger for
electroproduction experiments and detecting neutrals (γ, n). More information about these detector
subsystems can be found in [43] and [44].

2.3.1 The g11a Cryotarget

CLAS’s versatility as a detector has allowed the use of several target geometries and materials during
production runs. The cryotarget cell used for the g11a run period was a cylindrical Kapton chamber
40 cm in length with a 2 cm radius [45]. The target material used was liquid H2. A schematic of the
g11a cryotarget is provided in Figure 2.10. Measurements of the target’s temperature and pressure
were taken approximately once per hour. Calculations of target density for each run have been made
by M. Williams. The target density averaged over runs has been calculated to be 0.07177g/cm3 with
relative run-by-run fluctuations of about 0.1% [4].

2.3.2 Start Counter

The triggering scheme of the g11a run period benefited from the installation of a new start counter
detector. The start counter is a PMT-instrumented scintillator detector that surrounds the CLAS
cryotarget (see Figure 2.11). The start counter is divided into six sectors (matching CLAS), each
of which is constructed of four independently-instrumented scintillator strips. Timing resolution
of the start counter is ≈400 ps. Raw timing information from the start counter was not used for
this analysis; however, start counter contributions to the trigger efficiencies played a large role in
the analysis of the γp → K+Λ reaction in g11a (see §7.3.3). More information on the CLAS start
counter can be found in [46].
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Figure 2.8: A photograph of the CLAS detector. This picture of CLAS is taken from the downstream
direction. The six sections visible are the region-3 drift chambers. TOF scintillators are pulled away
from the drift chambers and can be seen at left. Image source: [38].

Figure 2.9: A schematic diagram of the CLAS detector. Detector subsystems are color-coded as
follows: drift chambers shown in violet, toroidal magnet in light blue, TOF scintillators in red,
C̆erenkov detectors in dark blue, electromagnetic calorimeters in green. Image source: [38].
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Figure 2.10: A schematic diagram of the g11a Cryotarget. The cryotarget cell used for the g11a run
period was designed by Steve Christo. It was 40 cm long, 4 cm in diameter and filled with liquid
H2. Image source: [45].

2.3.3 Superconducting Toroidal Magnet

As a magnetic spectrometer, CLAS’s analysis power lies in its magnetic field. CLAS’s magnet is a
superconducting toroidal magnet composed of six kidney-shaped coils connected in series, designed
and tested by Oxford Instruments, Ltd. in Witney, UK. The toroidal magnet is capable of generating
a maximum field strength of 3.5 T at an operating current of 3861 A. The six-fold cylindrical
symmetry of CLAS is matched by the magnet geometry; the six torus coils are arranged at 60◦

intervals about the beamline. The magnet coils are located between the Region-1 and Region-3
drift chambers, restricting the bulk of the magnetic field to the volume encompassed by the tracking
detectors. The torus coils are cooled to a temperature of 4.4K using liquid He supplied by CEBAF’s
central cryogenic facility. A photograph of the CLAS superconducting toroidal magnet is given in
Figure 2.12.

For the g11a run period, the torus was run in normal mode at a current of 1920 A. This configu-
ration created a maximum field of ≈1.8 T in a clockwise direction about the beamline when viewed
from upstream. Thus, positively-charged tracks were bent away from the beamline, negative tracks
towards the beamline. Operating at half of the maximum field strength, though a compromise in
overall momentum resolution, allowed a greater acceptance for negatively-charged particles. More
information regarding design and testing of the CLAS superconducting toroidal magnet can be found
in [47].

2.3.4 Drift Chambers

CLAS is equipped with three drift chamber detector systems that detect charged tracks as they
propagate through the detector. The drift chambers are divided into three regions (see Figure 2.13).
Region 1 lies between the physics target/start counter and the innermost part of the toroidal magnet
coils. The Region 2 drift chambers occupy the region of CLAS with the strongest magnetic field.
The Region 3 drift chambers are the outermost tracking chambers, located outside of the magnet
coils. The magnetic field strength is minimal in Regions 1 and 3.

Each region of the CLAS drift chambers is divided into six sectors, each of which subtends 60◦

of the plane perpendicular to the beamline. Each sector of each drift chamber is composed of two
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Figure 2.11: A schematic diagram of the CLAS Start Counter. The start counter used for the
g11a run period is a six-sector scintillator detector. Each sector is composed of four independently-
instrumented scintillator strips. Image source: [46].

superlayers. The superlayers house an array of drift cells defined by six 140 µm gold-plated Al field
wires in a normal-hexagonal configuration around a 20 µm gold-plated tungsten sense wire. The
drift cells are arranged such that adjacent cells share two field wires. The radius of drift cells ranged
from 15-17 mm in Region 1 to 26-29 mm in Region 2 to 40-45 mm in Region 3. In each sector, one
superlayer had wires oriented in the plane perpendicular to the beam line. The wires in the other
superlayer were oriented at a 6◦ angle out of this plane to improve resolution in the φ-direction.
The drift chambers were filled with a gas mixture of 90% Ar and 10% CO2. During operation, field
wires were kept at a negative high voltage, creating a potential difference between them and the
sense wires. Electrons freed by charged tracks ionizing the gas mixture were then collected by the
positively charged sense wires. Signals from the sense wires were processed by preamplifiers and
amplifier discriminator boards before being recorded by TDCs. A more detailed exposition of the
CLAS drift chamber system design, fabrication, and testing can be found in [48], [49], [50], and [51].

2.3.5 Time-Of-Flight Detectors

The final CLAS subsystem that is essential to this analysis is the Time-Of-Flight (TOF) scintillator
shell. The TOF shell subsystem provides precise timing information for charged tracks as they
exit CLAS. The TOF shell is a six-fold-segmented array of scintillator bars that are located about
4 m from the CLAS target and oriented perpendicular to the beamline. Each sector of the TOF
shell is made up of 57 individual scintillator bars fabricated from Bicron BC-408 material. As the
majority of tracks travel trough the forward region of CLAS (at an angle less than 45◦ from the
beamline), scintillator bars in this region are narrower (15 cm). At less forward angles (greater than
45◦ from the beamline), TOF scintillators are wider (22 cm) (see Figure 2.14). The lengths of TOF
scintillators varied from 32 to 445 cm, as dictated by the shape of the sectors. All scintillator bars in
the TOF shell are 5.08 cm thick, a dimension that provides measurable signal for minimum-ionizing
tracks.
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Figure 2.12: Photograph of the CLAS Superconducting Toroidal Magnet. Image source: [47].

The TOF scintillators are each instrumented with two PMTs, one coupled to each end of the
bar via a short Lucite light-guide. The eighteen least forward scintillator bars are coupled in nearest
neighbor pairs, reducing them to nine effective scintillators. The timing resolution of the scintillators
is between 80 and 160 ps. This wide range in timing resolution is due to the wide range in scintillator
lengths.

Because of its excellent timing resolution and acceptance of charged tracks, the TOF shell was
an important part of the g11a trigger. The TOF shell was also designed with the goal of aiding
π/K separation for track momenta up to 2.0 GeV/c; thus, we relied heavily on the TOF detector
for particle identification in this analysis. Further details concerning the design, construction, and
testing of the TOF detector subsystem can be found in [52].

2.4 Beamline Devices

Physics experiments in Hall B benefit from several instruments used for beamline diagnostic studies.
For g11a, instruments for measuring beam position and profile were located upstream from the CLAS
detector. Beam positioning information was gathered by RF-cavity beam-position monitors (BPMs)
located 36.0 and 24.6 m from the physics target [53]. Beam profile and current were measured with
harp scanners, tungsten and iron wires that were pulled through the electron beam in the two
directions perpendicular to the beamline. Electrons scattered by the harp wires were detected by
PMT arrays located upstream from CLAS. Harp scanners were located at 36.7, 22.1, and 15.5 meters
upstream from the CLAS target.

Instruments for measuring photon flux were located downstream from the CLAS detector. The
total absorption shower counter (TASC) was a lead-glass scintillator array, assumed to have a 100%
photon detection efficiency. The TASC could not be used with the higher-current g11a runs, and thus
was only used for several lower-current “normalization” runs. Though not used during production
runs, the TASC was a vital piece of hardware because it was used to calculate the tagging ratio of
the tagger t-counters (the fraction of hits in the tagger t-counters that corresponded to photons that
actually made it to the target). Another piece of diagnostic hardware, the pair spectrometer (PS),
measured the rate of production of e+e− by an aluminum converter placed in the beamline. The
PS was used during production runs, but was calibrated against the TASC during normalization
runs. The pair counter (PC) utilized a four-scintillator array to detect e+e− pairs created by a thin
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Figure 2.13: Diagram of the CLAS Detector Subsystems (cutaway). This image shows the locations
of several detector subsystems inside of CLAS. Toroidal magnet coils are represented by the kidney-
shaped dashed lines. The three different drift chamber regions are labeled. Shown are two positively-
charged tracks being bent by the magnetic field in the volume between Regions 1 and 3. Image source:
[48].

Figure 2.14: Diagram of the CLAS time-of-flight scintillators. Shown is one sector (one sixth of
CLAS) of the TOF scintillator shell. Scintillator bars are instrumented with PMTs are each end.
Image source: [52].
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aluminum foil in the beamline. The PC was used to monitor photon beam profile downstream of
the CLAS detector.

2.5 g11a Triggering and Data Acquisition

The g11a data run was designed with a somewhat specific purpose: to investigate the existence of
a pentaquark state. To reduce the number of background events in the dataset, g11a used a more
restrictive trigger than other CLAS production runs. For a given event to be recorded, it had to
set both the tagger Master OR (MOR) and the CLAS Level 1 trigger within a coincidence window
of 15 ns. To reduce the number of recorded events with center of mass energies below that of the
theorized pentaquark, only the 40 tagger T-counters corresponding to the highest energy photons
(Eγ > 1.56 GeV) were included in the MOR. Events created by lower-energy photons were recorded
when a higher-energy photon was present in the same timing window. For an event to set the CLAS
Level 1 trigger, coincidence between the start counter and TOF paddles had to be observed in two
separate sectors. The window for TOF and start counter coincidence was set to 150 ns [4]. This
constriant requires an event to have at least two charged tracks in order to be recorded. Once
an event passed the g11a trigger, the data acquisition system (DAQ) collected from all detector
subsystems information that was necessary for calibration and analysis.

2.6 Summary

Though not it’s main purpose, the g11a dataset collected by the CLAS Detector in Hall B at Jefferson
Laboratory is well-suited to study of hadron photoproduction in the non-perturbative QCD energy
regime. Our analysis of K+Λ photoproduction in g11a benefits greatly from the tagged photon
beam created by CEBAF and the energy resolution of the Hall B photon tagger. In this chapter, we
have described the construction and motivation of the CLAS detector. In the next several chapters,
we present detailed descriptions of our extraction of the γp→ K+Λ signal in g11a (Chapter 3) and
our functional understanding of the CLAS detector (Chapters 4 and 7).



Chapter 3

Data Reduction and Event
Selection

The g11a dataset was collected by the CLAS Collaboration during the period of May 17 to July
29, 2004. g11a is comprised of roughly 20 billion triggers, represented as 21 TB of raw detector
output data. Before physics analysis can be done, the dataset must be cooked ; the raw signals must
be interpreted as information regarding the track components and kinematics of each event. It is
during the cooking process that detector components are checked for functionality and calibrated.
g11a was cooked by Maurizio Ungaro at INFN [55]. At the time of this analysis, g11a was the
world’s largest photoproduction dataset in the medium-energy regime.

Because the Λ is neutral and unstable (cτ = 7.89 cm), we gain access to it via its predominant
charged decay mode, Λ → pπ−. Unfortunately, the cross section for the γp → K+Λ reaction is
small in comparison to more common reactions. Thus, the vast majority of the g11a dataset is
composed of events that are extraneous to our analysis. In order to separate γp → K+Λ signal
events from these irrelevant background, we began by examining a + +− charged track skim of the
g11a dataset for K+Λ signal in the K+pπ− final state. We then examined a large portion (28%)
of the full two-track dataset by investigating the K+p(pi−) final state. This chapter outlines the
procedures by which we have extracted K+Λ events from g11a as well as all cuts and corrections
that were made to the data for both the two-track and three-track data sets.

3.1 Excluded Runs

The g11a dataset was collected in shorter intervals, called runs, each containing roughly 10 million
triggers. This subdivision allowed the study of time-dependent detector and data acquisition prob-
lems to be addressed on a run-by-run basis. “g11a” refers to 386 individual CLAS runs between
43490 to 44133. Runs between 43490 and 44107 were collected with a 4.019 GeV electron beam,
whereas runs between 44108 and 44133 were collected with a 5.021 GeV beam. Though it is possible
to amalgamate the two beam energies into one analysis, we omit the higher-energy dataset from this
analysis to avoid any systematic differences. Further, runs between 42490 and 43525 were part of
the g11a commissioning period. These runs were taken in order to facilitate testing and set-up of
CLAS and are not considered “production” runs. We omit these runs as well.

There are several other runs which were later found to be unreliable and are thus excluded from
our analysis. While g11a was being recorded, a logbook was kept of all shift workers’ observations.
The CLAS g11a logbook entries for runs 43981-43982 show that there were problems with the drift
chambers during these runs. Similarly, logbook entries for runs 43989-43991 show problems with the
DAQ system. In order to study the g11a trigger, several runs were taken with different triggering

32



CHAPTER 3. DATA REDUCTION AND EVENT SELECTION 33

Excluded Run Description
43490-43525 commissioning runs
44108-44133 5.021 beam energy
43675-43676,
43777-43778, 44013 alternate trigger

43989, 43990-43991,
44000-44002,
44007-44008, 44010-44012

TOF problem in sector 2

43586-43589, 43590-43596 TOF problem in sector 3
43588, 43757 abnormal K+Λ yield

Table 3.1: Table of g11a runs excluded from this analysis

schemes: 43675-6, 43777-8, 44013. Several runs showed systematic problems with the DC power
supply to the TOF counters in sector 2 (runs 43989, 43990-1, 44000-2, 44007-8, 44010-2) and sector
3 (runs 43586-9, 43590-6). Lastly, runs 43588 and 43757 exhibited abnormal flux-normalized K+Λ
yields (see §4.6) and are omitted from this analysis. All of the runs listed above are excluded from
our analysis. A summary of these is provided in Table 3.1. The fraction of 4.019 GeV beam-energy
triggers excluded by omitting these files is roughly 6%.

For the K+pπ− final state (“three-track”) analysis, all g11a runs not mentioned as excluded
were used. For the K+p(π−) (“two-track”) analysis, however, we used only runs in the range 43600-
43906, roughly 28% of the full dataset. Because the amount of recorded K+Λ events in the two-track
topology is larger than that of the three-track topology by a factor of the π− acceptance (≈ 20%),
only a fraction of the two-track dataset is needed to provide comparable results.

3.2 Kinematic Fitting

Our analysis, as well as tagger and momentum corrections employed in our analysis, makes heavy use
of kinematic fitting [56]. This section give a brief sketch of the purpose and utility of the kinematic
fitter.

Kinematic fitting is a means of improving the precision of measured quantities by imposing
constraints. When the CLAS detector records an event, the precision of the measured quantities is
dictated by uncertainties inherent to the detector (tracking resolution). For a measured quantity,
we say that:

η = y + ε, (3.1)

where y is the actual value that would have been measured by CLAS in the absence of measurement
error ε, and η is the measurement result. For a given event, however, we may impose constrains (i.e.
conservation of energy and momentum) based on a physics hypothesis which can be used to refine
the measurements on an event-by-event basis and to obtain estimators for y (called ŷ).

The kinematic fitter developed at Carnegie Mellon uses the method of Lagrange multipliers
to perform a least squares fit of a hypothesis, dictated by physics constraints, to the measured
quantities. The process of kinematic fitting begins with the selection of a hypothesis for an event.
As an example, assume that CLAS measures a n-track final state (t1,t2, ...tn) and associates the
event with a given photon, γ0. A hypothesis that we wish to fit to the event is then represented
by a physical reaction in which physical conservation laws are implicit. This hypothesis can have
the same number of final-state particles (i.e. γp→ XY Z) or it can assume that CLAS was unable
to reconstruct one of the tracks (i.e. γp → XY Z(W )). In the former, the fit has four constraints:
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conservation of energy and conservation of three-momentum. In the latter case, the fit is less-
constrained; the momentum of the missed particle is unknown. The fit then uses the constraint
equations to make estimations of the of the actual quantities.

In order to use the kinematic fit to select events, we need to determine a “goodness of fit” given
a physics hypothesis. This goodness of fit comes naturally in the case of least squares fitting, as
the minimization quantity follows a χ2-distribution with (q − d) degrees of freedom where q is the
number of constraints and d is the number of unknown parameters [57]. We assign a confidence level
(CL) to a fit and event as

CL =
∫ ∞

χ2
f(z;n) dz. (3.2)

where z represents a fit quantity and f(z;n) is the χ2 probability density function with n degrees of
freedom. The confidence level represents the probability that a second event chosen from a statistical
distribution will yield a χ2 greater than that obtained from the fit [58]. Confidence levels from events
that satisfy the fit hypothesis will populate the range (0, 1] evenly. Events that are not properly
described by the fit hypothesis will have very small confidence levels. Thus, to select events of a
particular reaction from a dataset, we may kinematically fit each event using the reaction as our
physics hypothesis and cut events which give a small confidence level (e.g. CL < 10%). Because
the CL distribution for signal events is flat, we will be cutting a small, well-understood percentage
(10%) of signal. Our means of checking that the kinematic fit is working properly is to examine the
pulls for each measured quantity, a measure of the difference between the measured quantity and
the actual quantity relative to their errors. The pull z for a measurement y, estimation η, and errors
σ(y) and σ(η) is written as

z =
η − y√

σ2(y)− σ2(η)
. (3.3)

Pull distributions should be Gaussian distributions centered at 0 with unit mean.
A great deal of effort has been invested in building and testing the kinematic fitter for g11a,

mostly in the area of calculating an empirical parametrization of the g11a covariance matrix. The
result, as is demonstrated in the following sections, is an extremely efficient tool for both detector
and data analysis.

3.3 Corrections to Measured Momenta

The CLAS detector’s precision and powerful analysis tools such as the kinematic fit allow us to
use CLAS data to examine systematic effects due to detector subsystems. The high statistics of
the g11a dataset has allowed the CLAS collaboration to calculate empirical corrections for these
systematics. Described in this section are the eloss package used to correct reconstructed tracks’
momenta according to their energy losses in the detector and the tagger and momentum corrections
derived by the PWA group at CMU. We have applied these three corrections to events in our analysis
and found greater precision in reconstructed momenta.

3.3.1 Energy-Loss Corrections

The first tracking component of CLAS that a particle created in the target encounters is the Region 1
drift chamber, roughly 0.75 m from the event vertex. Thus, before the track’s momentum and energy
can be measured by CLAS, it may pass through material in which it loses energy, namely the target,
target cell, beam pipe, start counter, and volume between start counter and inner drift chambers.
To accurately analyze physics at or near the event vertex, the measured momenta were corrected
according to track particle type and material through which it passed. For CLAS analyses, these
corrections are handled by the eloss package, written by Eugene Pasyuk at ASU [59].
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Figure 3.1: Shown above are the relative tagger corrections for each tagger E-counter for the g11a
dataset as calculated in [4]. Sagging of the focal plane between its four support yokes can be seen
in the structure of the corrections. The twelve points that do not follow the trend of the corrections
are the result of mis-cabling of the E-counters during data taking. Image source [4].

In previous CLAS γp → K+Λ analyses, energy-loss corrections were applied to all particles
assuming that their associated tracks began at the event origin. Due to the macroscopic path length
of the Λ (cτ = 7.89 cm), this correction is not correctly applied to the p and π− tracks. In the
three-track analysis where both the p and π− momenta are observed, we are able to ensure a more
accurate energy-loss correction. We first recalculated the event vertex using the K+ momentum and
idealized beam momentum. We then recalculated the Λ decay vertex using the p and π− momenta.
All vertex calculations were performed using MVRT, a vertexing package written by J. McNabb
[12]. Finally, we applied energy-loss corrections these more accurately defined tracks.

3.3.2 Tagger Corrections

Physical distortions of the Hall B photon tagger’s focal plane give rise to inaccuracies in its detection
of recoil electrons and thus photon energy. This effect has been examined via a kinematic fit to the
inclusive γp → pπ+π− channel in both the g1c [60] and g11a datasets [4]. Tagger corrections were
calculated by comparing the measured photon energy to the energy constrained by the kinematic fit.
A systematic correction was found for each tagger E-counter (see Figure 3.1). These results have
been interpreted as due to sagging of the focal plane between its four support yokes [61]. This sag
displaces the narrow E-counters from their ideal locations, causing them to detect electrons with
slightly different energies.

We have applied the derived g11a tagger corrections to each event in this analysis according its
associated tagger E-counter.

3.3.3 Momentum Corrections

The CLAS detector’s momentum reconstruction power lies in its toroidal magnetic field and tracking
chambers. Discrepancies exist between the magnetic field at the time of data taking and CLAS’s
“ideal” magnetic field map. Similarly, the spatial configuration of the drift chambers differs slightly
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from the “ideal” configuration due to misalignment and wire sag. These discrepancies give rise to
inaccuracies in the reconstructed momenta.

Momentum corrections for the g11a run period have been derived using the γp→ pπ+π− channel
[62]. Tagger and energy-loss corrections were applied to each pπ+π− event in which all final state
tracks were reconstructed by CLAS. Three separate kinematic fits were then performed, each treating
one of the detected final-state particles as “missing”: γp → pπ+(π−), γp → p(π+)π−, and γp →
(p)π+π− hypotheses. Measured momenta for the “missing” particles were then compared to the
missing momenta from the kinematic fits. Corrections were calculated for each CLAS sector and
particle charge. Each sector was divided into twelve 5◦ bins in the azimuthal angle φ. Each φ bin
was then divided into fifteen polar angle (θ) bins: nine 5◦ bins in the range 5◦ ≤ θ < 50◦, four
10◦ bins in 50◦ ≤ θ < 90◦, and two 25◦ bins in 90◦ ≤ θ < 140◦. Corrections to the magnitude
of momentum for each track charge were calculated in each of the angular bins, and were typically
found to be less than 10 MeV/c.

For our analysis, we applied momentum corrections to all final-state particles according to their
charge and trajectory.

3.3.4 Effects of Corrections

We investigate the effects of the g11a energy and momentum corrections on the γp→ K+Λ channel
by plotting both the missing mass off the K+ and pπ− invariant mass before and after the corrections
(see Fig 3.2). Events that are considered in this comparison are those that pass a kinematic fit to
a γp→ K+pπ− hypothesis with a confidence level of 1% or greater. Note that these quantities are
both a measure of the Λ mass, which the PDG reports to be 1.115687 GeV/c2. The effect on the
pπ− invariant mass distribution is minimal. The distribution’s mean is shifted from 1.11497 GeV/c2

to 1.11616 GeV/c2, a difference of 0.0042% from the actual Λ mass. The width of the distribution
is reduced from 1.771 MeV/c2 to 1.622 MeV/c2, an improvement of 8%. The missing mass off
the K+ distribution, however is rectified dramatically by the corrections. The measured missing
mass distribution is non-Gaussian in shape, and cannot be fit reliably to a Gaussian and polynomial
background. After corrections are applied, the distribution assumes a much more Gaussian shape
with a mean of 1.11639 GeV/c2 and width of 7.7449 MeV/c2.

3.4 Event Filter: Kinematic Fits of γp → K+pπ− and γp →
K+p(π−)

To facilitate easier data analysis, we wished to reduce the entire g11a dataset to a dataset containing
only events that were likely to come from the γp→ K+Λ reaction. This reduction was done primarily
by the kinematic fitter. We begin with a discusstion of our fit to the three-track final state topology
and follow with that of the two-track topology.

3.4.1 γp → K+pπ−

For the K+pπ− topology, we began by applying to the data two very loose missing mass cuts:

(1) require total missing mass to be between −300 MeV/c2 and 300 MeV/c2

(2) require missing mass off K+ to be less than 1.4 GeV/c2.

These cuts greatly reduce the number of ineligible backgound events that we kinematically fit.
We applied momentum and energy-loss corrections to the remaining candidate events. We then
performed a 4C kinematic fit of the events to a γp → K+pπ− physics hypothesis. We used the
results of this fit to cut out any events yielding a confidence level less than 1%.
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Figure 3.2: Plots showing the effects of energy-loss and momentum corrections on missing mass
off K+ and invariant mass of pπ− system. Histograms (a) and (b) show the pπ− invariant mass
before and after energy and momentum corrections. Mean (µ) and variance (σ) of the distributions
are from fits (shown in red) to Gaussian and 2nd-order polynomial background. The difference is
minimal due to the small break-up momentum of the Λ. Histograms (c) and (d) show the missing
mass off K+ before and after corrections. Fitting of the distributions is performed as in (a) and (b).
Here, the effect of the corrections is noticeable. The fit demonstrates how the non-Gaussian shape
of the distribution is tamed by the corrections.
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Results of the kinematic fit are shown in figure 3.3. We see that the confidence level distribution
for signal events is reasonably flat. This is a good indicator that the kinematic fit is working properly
for this channel. Also shown is the effect of the confidence level cut on the missing mass off K+

distribution. The 1% confidence level cut is extremely effective in its removal of background.
Were the kinematic fit perfect, the amount of signal lost to the 1% confidence level cut would

be 1%, as described in §3.2. However, signal events which the e-loss and momentum corrections
were not able to rectify are likely to have lower confidence levels because conservation of energy
and momentum would have been harder for the kinematic fit to enforce. One possible source for
such events are so called “hard scatters,” or tracks that interact with the nuclei of detector material
rather than electrons. Tracks that experience hard scatters before they are tracked by CLAS may
exhibit large inaccuracies in their recorded momenta. Hard scatters affect a very small fraction of
the data. A larger contributor to signal loss is non-Gaussian errors attributed to energy loss of
tracks in material. The function describing the energy loss spectrum acutally takes the form of a
skewed Landau distribution [5]. As the kinematic fitter assumes that this distribution is Gaussian,
confidence levels are slightly inaccurate for these events. Fortunately we are able to simulate these
effects and ensure that the same percentage of signal is lost in both data and Monte Carlo.

Using the 1% cut on confidence levels from a kinematic fit to γp → K+pπ−, we produced an
analysis skim of the g11a dataset which includes some 1.8 M events. We then binned this dataset
into 121 10 MeV-wide

√
s bins in the range 1.630 GeV ≤

√
s < 2.840 GeV. By fitting a Gaussian and

linear background to the missing mass off K+ distribution in each bin, we see that the background
that passes the skim is less than 2% in most bins (see Figure 3.4). We then fit the total missing
mass off K+ distribution with double Gaussian and quadratic background functions to find a total
of ≈ 1.563× 106 K+Λ events in the skimmed dataset.

3.4.2 γp → K+p(π−)

To skim possible γp→ K+Λ events from the two-track dataset, we began by making two very loose
missing mass cuts:

(1) require total missing mass to be within 300 MeV/c2 of mπ− = 139.57018 MeV/c2

(2) require missing mass off K+ to be less than 1.4 GeV/c2.

Though missing the π− increases statistics, it is also implies a less-restrictive 1C kinematic fit to
γp→ K+p(π−). Because of this, we applied a more stringent 5% confidence level cut. A plot showing
the missing mass off K+ distribution for all events in our skim of the g11a two-track topology is
given in Figure 3.5. Notice that unlike the three-track topology, the background is significant in
comparison to the signal.

Again we binned the data into 10-MeV-wide
√
s bins, but this time over the larger energy range

1.62 GeV ≤
√
s < 2.84 GeV. We then applied momentum corrections and tagger corrections were

applied as described for the K+pπ− topology. However, because the π− track is not observed for
the two-track analysis, we could not locate the Λ decay vertex using MVRT. Thus, energy-loss
corrections were applied to all particles assuming track origins at the event vertex.

As with the K+pπ− topology, we lose a percentage of the signal events to the confidence level
cut. This percentage is greater than the ideal 5% because of hard scatters, as these effects cannot
be accounted for by the confidence level calculation. We show in §4.2 that this effect is properly
handled by our detector simulation, causing an equal fraction of Monte Carlo events to be removed
by the confidence level cut.

By fitting the missing mass off K+ distribution with double Gaussian and quadratic background
functions, we find that the skim contains approximately 2.9096 events.



CHAPTER 3. DATA REDUCTION AND EVENT SELECTION 39

confidence level
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

200

400

600

800

1000

1200

1400

1600

1800

(a)

)2 (GeV/c+missing mass off K
1.09 1.095 1.1 1.105 1.11 1.115 1.12 1.125 1.13 1.135 1.14
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

(b)

)2 (GeV/c+missing mass off K
1.09 1.095 1.1 1.105 1.11 1.115 1.12 1.125 1.13 1.135 1.14
0

500

1000

1500

2000

2500

3000

3500

(c)

Figure 3.3: The above plots show the results of a kinematic fit to γp → K+pπ− for events in run
43815. Plot (a) shows the confidence levels from all events. The confidence level is fairly flat above
0.4. Plot (b) show the missing mass off K+ for all events in the run. There is a large amount of
background, however, the Λ peak can be seen. Plot (c) shows the missing mass off K+ distribution
for events passing the 1% confidence level cut. The effect of the cut is dramatic.
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Figure 3.4: Plots above show (a) yields and (b) ratio of signal to total yield from the three-track
skim of γp→ K+pπ− from g11a. Signal was calculated by fitting missing mass off K+ distribution
in each 10 MeV-wide

√
s bin to a Gaussian and linear background. Signal and background functions

were then integrated over the range µ ± 3σ, where µ and σ are the mean and width from the fit
in each bin. The skim is remarkably clean, with signal making up ≈ 98% of the yield in each bin.
Ratios are not shown for bins with

√
s < 1.7 GeV because low statistic limited reliable fits.
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Figure 3.5: Shown above is the missing mass off K+ distribution for all events in the K+p skim of
g11a. The less restrictive 1C kinematic fit allows more background to pass the skim than did the
4C fit on the K+pπ− topology.
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3.5 Particle Identification: Calculated Mass Cuts

We show in the previous section that the kinematic fit and confidence level cut is remarkably effiecient
at separating background from the γp → K+Λ signal. We are able to further separate signal and
background by considering timing information from the CLAS detector. Our analysis benefits from
the fact that the K+Λ → K+pπ− system is the lowest-energy strange final state produced in CLAS.
Most of the background events that we wish to subtract are events without associated strangeness
(typically mis-identified π+pπ− final states). By using timing information, we are able to further
separate protons and π+s from K+s, and remove events that do not include K+s. It is in this sense
that we refer to these cuts as particle identification.

For purposes of particle identification, the most instructive visualization of events in our skim is
the calculated mass plane. Using tracking and timing information from CLAS, we are able to calcu-
late a mass for each charged track observed in CLAS. By using the event vertex time (extrapolated
from tagger T-counter information) and TOF counters, we are able to calculate the time taken by
the particle to travel from its origin to the edge of CLAS, t. From drift chamber tracking information
we calculate the path length of the track, d. We then construct the track’s velocity β as

β =
1
c
d/t. (3.4)

We then use the track’s deflection as it traveled through CLAS’s toroidal magnetic field to calculate
the momentum of the track, |~p|. We can then use these measured quantities to calculate the mass
of the particle, mc, via the standard equation for the relativistic momentum of the particle

|~p| = γmcβc =
1√

1− β2
mcβc (3.5)

which we can rewrite as

mc =

√
~p2(1− β2)
β2c2

. (3.6)

Because of the nature of the background in our channel, we wish to determine whether hypoth-
esized K+ tracks are actually K+’s or mis-identified protons or π+’s. We view each event by filling
a two-dimensional histogram with the calculated masses (mp, mK)of the hypothesized proton and
K+ tracks for each event. The calculated mass plane for all events in our three-track skim of g11a
is shown in figure 3.6. By looking at this projection of the data, we are able to see sources of
background quite easily. There are four separated regions of the calculated mass plane:

(i) mp > 0.8 GeV/c2:
This region is populated predominantly by signal events. There is a very slight pπ+π− back-
ground that cannot be separated from signal in the calculated mass plane, but is mostly
separated in the missing mass off K+ distribution.

(ii) 0.4 GeV/c2 < mp ≤ 0.8 GeV/c2 ∩ mK > 0.8 GeV/c2:
This region represents a small number of events that passed through the confidence level cut
with positive tracks reversed (i.e. p mis-identified as K+ and K+ mis-identified as p) due to
kinematic ambiguities. Such ambiguities occur infrequently and typically in higher-

√
s bins.

These events are also included in region (i) with tracks identified correctly and are cut from
our analysis.

(iii) mp ≤ 0.4 GeV/c2 ∩ mK > 0.8 GeV/c2:
This region is populated by events for which the K+ track is a mis-identified proton and the
proton track is a mis-identified π+. This region is strictly background, and its events are cut
from the analysis.
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Figure 3.6: This plot shows the calculated mass for proton tracks versus the calculated mass for K+

tracks for events in our K+pπ− skim of g11a. The plane is broken into four regions described in the
text.

(iv) mp ≤ 0.8 GeV/c2 ∩ mK < 0.8 GeV/c2:
This region seems to be populated with events in which the K+ track is correct, but the
proton track is a mis-identified K+. This would be a much more exotic final state, indicating
at least one more missing particle with charge −1 and strangeness +2. It is highly unlikely
that such events would make it through the kinematic fit with a confidence level greater than
1%. Upon further investigation, we have found that the events in this region are actually
γp→ K+Λ signal events with incorrect proton timing information. The majority of events in
this region have the proton and π− from Λ decay being detected by the same TOF counter
in the same sector (see Fig 3.7). (This is more likely than in other channels due to the small
break-up momentum of the Λ.) TOF counters in CLAS are instrumented with single-hit
readout electronics, and thus are only able to record one time-of-flight for both particles. The
time-of-flight of the first particle to hit the counter (typically the faster-moving π−) is then
assigned to both particles. This forces the calculated mass of the proton closer to that of the
K+. It should be noted that the missing mass off K+ is unaffected for these events. As long as
we are careful to make no other timing cuts, events in this region can be kept in our analysis.

The result of our particle identification studies is a cut removing regions (ii) and (iii) of the
calculated mass plane. Events in the region mp ≥ 0.8 GeV/c2 ∪ mK < 0.8 GeV/c2 are kept. The
effects of this particle identification cut are shown in Figure 3.8. Roughly 1.47 million events are
left after the particle identification cut.
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Figure 3.7: The plots above show (a) π− TOF counter v. proton TOF counter, (b) π− sector v.
proton sector, and (c) the missing mass off K+ distribution for events in region (iv) of the calculated
mass plane (see Fig 3.6). The skewed proton calculated mass in this region is due to the proton and
π− hitting the same TOF paddle.
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Figure 3.8: Figure (a) above shows the effect of the calculated mass particle identification cut on the
missing mass off K+ distribution from the three-track analysis. Missing mass off K+ for all events
is shown in blue. The distribution after the PID cut is shaded.
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Figure 3.9: Figure (a) shows the calculated mass plane for events in the g11a two-track topology
with

√
s < 1.660 GeV. Cuts are defined in the text and displayed on the plot in red. Figure (b)

shows the effect of these cuts on the missing mass off K+ distribution. The unshaded histogram is
filled with all events in the skim (with

√
s < 1.660 GeV). The blue histogram shows events removed

by PID cuts and the shaded histogram shows events that pass the cuts.

For the two-track final state, we employ the calculated mass cuts as well. The two-track calculated
mass plane diplays all of the same features described above. The less restrictive 1C kinematic fit
allows some π+π+ background to pass the 5% confidence level cut (events for which the proton and
K+ are mis-identified π+s). In order to remove this background, we make an extra cut requiring
either the proton or K+ mass to be greater than 0.200 GeV/c2.

Upon further study, we found background level for in the two-track study for center-of-mass
energies below 1.66 GeV to be excessive. Plots of the calculated mass plane and missing mass off
K+ distribution for these events is shown in Figure 3.9. We see from the calculated mass plane that
a significant amount of this background is caused by pπ+ events for which the π+ is mis-identified
as a K+. We cut these events by making a further calculated mass cut defined by the function

mp < mK+ + 0.75, (3.7)

where mt is the calculated mass of particle type t. As Figure 3.9 shows, this cut is very effective.
Note that the histogram showing events cut by the particle identification shows no signal peak.

3.5.1 Signal Loss

Signal loss to the particle identification cuts described above is minimal. Figure 3.10 shows the
missing mass offK+ distribution for events removed by our calculated mass cuts in both the two- and
three- track analyses. For the three-track analysis, we estimate the K+Λ content of the distribution
by fitting to a double gaussian signal and linear background function. We find that the signal peak
in the removed events distribution contains approximately 1770 events, 0.11% of the total K+Λ
signal.

The amount of backgroung present in the two track analysis prevents us from simply using a
signal peak to estimate the percentage of events lost to PID cuts. Thus, we employ the method of
Feldman and Cousins [63] to estimate an upper bound on this loss. We begin by filling a histogram
with all events from runs 43840 which pass the 5% confidence level cut. To estimate the total signal
and background, we fit this distribution with a double Gaussian signal and quadratic background
functions. We focus on the the range 1.111 GeV/c2 ≤ m < 1.121 GeV/c2, where m is the missing
mass off K+, and integrate the fit functions to find approximately 22888.49 signal and 4430.03
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Figure 3.10: Plot (a) shows the missing mass off K+ distribution for events removed by PID cuts
in the three-track analysis. The signal peak is apparent and an estimate is made by fitting with a
Gaussian and linear functions. Plot (b) shows the distribution for all events in runs 43810-43819
(unshaded histogram) and a fit to a double Gaussian and quadratic background in black. The shaded
histogram shows the missing mass off K+ for events removed by the PID cuts. No signal peak is
apparent. Shown in red is a fit of a quadratic function. The blue lines indicate the range considered
for the application the Feldman-Cousins method (see text).

background events in this range. When we investigate the distribution for events removed by the
PID cuts, we find that a total of 2187 events are present in the range considered. To obtain an
estimate of the number of backgound events in this range, we fit the distribution with a quadratic
function and obtain an estimate of 2176.17 events. The Feldman-Cousins method provides us with
an upper-limit of 104.83 signal events at a 95% confidence level, roughly 0.45% of the total signal
in this range.

3.6 Detector Performance Cuts

In order to accurately calculate a rate for any reaction in CLAS, we need to calculate a detector
acceptance. For this analysis, we calculate a channel-specific acceptance using GSIM, a GEANT-
based simulation of the CLAS detector. The accuracy of this simulation has been tested in great
detail [64, 62]. For most regions of the detector and phase space, the simulation is very accurate;
however, there are regions of the detector for which simulations are not reliable. We must cut
from our analysis data and Monte Carlo events in these regions. We refer to such cuts as detector
performance cuts. This section describes the cuts motivated by this analysis. We also list several
cuts that are specific to this analysis, motivation for which can be found in Chapter 7.

3.6.1 Problematic TOF Paddles

By examining occupancies per TOF counter in both data and Monte Carlo, we were able to identify
individual paddles for which the GSIM simulation was inaccurate. Data and Monte Carlo events
for which any of the final state particles were detected by one of these problematic paddles were cut
from the analysis. A list of the problematic TOF paddles in each sector is given in Table 3.2. Note
that paddle 23 is removed in all sectors. Due to the 23rd paddle’s location on the boundary between
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Sector Removed Paddles
1 18,23,26,27,33
2 23
3 11,23
4 23,26
5 20,23
6 23,25,30,34

Table 3.2: The table above gives problematic TOF paddles which are removed from this analysis.

the first and second sections of the TOF wall, there is logical overlap between it and paddle 24. For
tracks which hit both paddles 23 and 24, tracking is inconsistent and cannot be modeled properly
by GSIM.

3.6.2 Minimum Proton Momentum Cut

Because they are much more susceptible to interactions with detector material, low-momentum
protons are difficult to model accurately. Energy-loss corrections are difficult to apply to such
tracks, and acceptance and track reconstruction are also affected. By selecting γp→ pπ+π− events
from the g11a dataset and Monte Carlo, one is able to empirically study the acceptance of proton
tracks in all areas of the detector and for all proton momenta [62]. Events in which a π+ and π−

were both detected were kinematically fit to the γp→ π+π−(p) hypothesis. The kinematic fit gives
a refined value for the missing momentum. Based on whether the “missing” proton was actually
detected by CLAS, an acceptance was assigned to the track based on the magnitude and production
angle of the proton.

It is found found that for protons with magnitude of momentum less than 375 MeV/c, Monte
Carlo acceptance did not match that of the data. Thus, we remove protons with |~p| < 375 MeV/c
from our analysis in both data and Monte Carlo.

3.6.3 Fiducial Volume Cuts

The studies mentioned above also found physical regions of the detector which are not modeled
properly by GSIM. The most prevalent of these are regions near the toroidal magnet coils. The
magnetic field near the coils varies quite rapidly. Our map of the field is not accurate enough in
these regions to account for this, and thus simulation is inaccurate here. Shown in Figure 3.11 are
the effects of cuts removing particle tracks that are too close to the coils to model. We also place a
cut on track polar angle in the forward direction at cos θ = 0.985 and sector-dependent polar angle
cuts in the backwards direction.

3.6.4 Problematic Drift Chamber in Sector 5

In studying differences between cross sections from individual sectors in CLAS, we have isolated a
discrepancy at a constant angle between sector 5 and the other sectors. Details of this study are given
in §7.4 of this document. The discrepancy shows no momentum-dependence, so the tracking error
must occur before the tracks are bent by the magnetic field. Because this discrepancy is dependent
only upon production angle of the K+ in the lab frame, we assume it to be the result of problems
with the Region 1 drift chamber in this sector. We thus remove all tracks with lab production angle
θ ∈ (0.45, 0.55) from both data and Monte Carlo in sector 5.
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Figure 3.11: Figure (a) above shows θlab v. φ for all tracks in our skim of g11a. Figure (b) shows
the same distribution with fiducial cuts applied.
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Figure 3.12: Shown above are missing mass of K+ distributions after all cuts have been applied in
several

√
s bins. Fits to a Gaussian and linear background (shown in red) yield a mean and width

for each distribution. The ±2.5σ cut boundaries are shown in blue.

3.7 Missing Mass off K+ Cuts: K+pπ− Topology

At this stage, any appreciable amount of background has been removed from the three-track dataset.
Missing mass off K+ distributions in several

√
s bins are shown in Figure 3.12. As a final cut on

this distribution, we fit Gaussian plus linear background to the missing mass peak in each
√
s bin.

According to the results of these fits, we keep all events that fall within 2.5σ of µ, where µ is the
mean of the Gaussian for each bin.

3.8 Background Subtraction: K+p(π−) Topology

For the two-track topology, we are able to further separate backgournd from signal. A powerful
background subtraction method has been developed by the PWA group at CMU [66]. To use this
method, we defined a metric based on three kinematic observables: cosine of the production angle
of the K+ in the CM frame (cos θK+

CM ), cosine of the proton angle in the Λ-helicity frame (cos θp
ΛHF ),
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and the azimuthal angle of the proton in the Λ-helicity frame (φp
ΛHF ), with ranges 2, 2, and 2π,

respectively. This metric defines the “distance” between event i and event j to be

d2
ij =

3∑
k=1

(
ξi
k − ξj

k

rk

)2

(3.8)

where the ξk are the three kinematic observables for each event and rk is the range for the kth

observable. For each event i in a W bin, we then used this distance function to find the 100
“closest” events. We then performed an un-binned maximum-likelihood fit of a Gaussian signal plus
linear background function of the missing mass off of the K+ to these 101 events.

The results of this fit are signal and background functions that are functions of the missing mass
off K+. We then evaluate the signal and background functions at mi, the missing mass off K+

value for event i, obtaining the values si(mi) and bi(mi), respectively. We then assign to event i a
Q-factor calculated as

Qi =
si

si + bi
. (3.9)

As such, Qi represents the probability that event i is a K+Λ event. Similarly, (1 − Qi) is the
probability that i is a background event. By filling histograms with events weighted by their Q
factor, we see the signal distribution as determined by the subtraction method. Figure 3.13 shows
that this background subtraction method works very well.

3.9 Final Data Yields

We conclude this chapter by providing the total data yields as a functtion of center-of-mass energy
after all cuts have been applied. A plot of this distribution for each analysis is shown in Figure
3.14. For the three-track dataset, we simply count the number of events in each

√
s bin and find

that the total number of events after cuts is 646612, approximately 41.3% of the number present in
the skimmed dataset. For the two-track analysis, we need to consider our background subtraction
method in counting our signal events. Thus, we sum the Q-factors of all events to find that about
1.657× 106 events remain after all cuts, about 57.0% of the total present in the skim.

3.10 Summary

To investigate the γp → K+Λ reaction, we have exploited the Λ → pπ− decay mode and studied
both K+pπ− and K+p(π−) final state topologies in the g11a dataset. We have developed a series
of particle identification cuts to select signal events from background. We have applied pre-existing
detector performance cuts as well as several cuts motivated by our analysis to ensure that the data
events we use in our analysis are able to be simulated in a consistent manner. For both topologies,
signal losses due to our analysis cuts are minimal. For the three-track topology, background levels
are negligible. For the two-track topology, we effectively separate signal and background by using
an event-based background subtraction method.
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Figure 3.13: Shown above are the effects of the background subtraction method in three cos θK+

CM

bins in (a)
√
s = 2.005 GeV and (b)

√
s = 2.605 GeV bins for the g11a pK+ topology. The full

missing mass off K+ distributions are shown as shaded histograms. Signal is shown in red and
background is shown in blue.
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Figure 3.14: Shown are the final data yields after all cuts are applied for (a) the three-track and (b)
two-track analyses.



Chapter 4

Acceptance Calculation and
Normalization

In the previous chapter, we described the method by which we extracted γp → K+Λ yields from
the g11a dataset. In order to parlay these data yields into a more meaningful quantity, the differ-
ential cross section, we need two more pieces of information: photon flux for the run period and
detector acceptance. Calculating the photon flux allows us to measure the rate at which K+Λ is
photoproduced. Detector acceptance refers to our understanding of the CLAS detector as a device
with inherent inefficiencies. Knowing the probability that CLAS will reconstruct a track of a given
particle type and kinematics allows us to remove detector- and analysis- based inefficiencies from
this rate calculation. If done properly, acceptance and flux correction of the g11a yields will produce
a differential cross section measurement that is independent of experimental method, a measurement
of the true physical quantity. This chapter outlines the methods that we used to calculate and test
acceptance for the CLAS detector, as well as work that went into calculation of photon flux for the
g11a run period.

4.1 Detector Simulation

4.1.1 GSIM

We began our detector acceptance calculation by generating 300 million γp → K+Λ events. We
refer to these events as the “raw” Monte Carlo (MC) events. Due to our acceptance calculation
method (see §6.1), it was unnecessary to include a physics model of the production mechanism.
Thus, the kinematic distribution of the raw K+Λ final state represents a pseudo-random sampling
of the reaction’s phase space (obeying only energy and momentum conservation).

To simulate the effects of the detector on these raw events, we employ a GEANT-based simulation
of the CLAS detector called GSIM. GSIM is the standard simulation package for any of the CLAS
Collaboration’s analyses, and is programmed with information specific to each run. GSIM’s main
task is to simulate detector signals for each subsystem of CLAS based on the kinematics for each
particle with which we supply it. To do so, GSIM takes as input the initial particle types, momenta,
and positions for each raw MC event. GSIM uses spatial information regarding the CLAS detector
materials and toroidal magnetic field to “swim” particles through the detector. GSIM also handles
the decays of all unstable particles (both K+ and Λ in our analysis). For each detector package
that a given track passes through, GSIM generates a simulated signal. More details on GSIM can
be found in [67]. Values of parameters used in the GSIM ffread card are provided in Table 4.1(a).

51
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(a)

Parameter Value
AUTO 1
KINE 1
MAGTYPE 2
MAGSCALE 0.4974 0.0
FIELD 2
GEOM ALL
NOSEC OTHE
TARGET g11a
TGPOS 0.0 0.0 0.0
STZOFF -10.00
STTYPE 1
RUNG 43852 1
BEAM 4.023

(b)

Flag Value
R 43852
Y
P 0x1f
f 1.0
a 1.0
b 1.0
c 1.0

Table 4.1: Values used for (a) GSIM ffread card and (b) GPP.

4.1.2 GPP and Momentum Smearing

The detector signals simulated by GSIM have been found to exhibit resolution better than that of
the actual CLAS detector. To ensure that our Monte Carlo is as similar to the data as possible,
we smear the timing signals by randomly displacing them from GSIM output values according to
well-understood functions. We use another standard CLAS software package, GPP, to smear timing
signals according to the specific detector subsystems which generated them. GPP smears signals
from scintillator detector components according to that component’s dimensions; a longer scintillator
requires a wider, more diffuse smearing function. GPP allows the user to control the severity of the
smearing. We have set the smearing level for scintillator timing signals to be 1.0. The flags and
parameter values used in running GPP are provided in Table ??(b).

In order to affect MC momentum resolution, GPP is also able to smear timing signals from CLAS
drift chambers. It has been determined that the GPP drift chamber smearing produces too high
a momentum resolution [4]. To study this effect, the kinematic fitter was used to fit γp → pπ+π−

Monte Carlo events with tracking times smeared by GPP to a γp→ pπ+π− hypothesis. Because the
covariance matrix for the kinematic fitter was tuned on this channel, the confidence level distribution
for a fit to data events is flat. The confidence level distribution for the kinematic fit to Monte Carlo
events, however, exhibited a positive slope, indicating that the momentum resolution generated by
GPP is higher than that of the data.

To smear tracking in the Monte Carlo effectively, we apply a momentum smearing algorithm. The
CLAS tracking angles are smeared by randomly sampling from a Gaussian distribution. Distributions
for each parameter are centered at the values of the tracking angle reported by GSIM and have width
1.85σtrack, where σt is the resolution determined by tracking software. Smearing of the magnitudes
of momenta is done in the same binning as was used for the g11a momentum corrections, and
exhibited an average smearing of ≈ 2 MeV/c. In the γp → pπ+π− study, this smearing algorithm
forced the confidence level distribution to be flat in all kinematic regions. The plot of confidence
level for γp→ K+pπ− and γp→ K+p(π−) Monte Carlo events show that it is also effective for our
analysis (see Figure 4.1).
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Figure 4.1: Shown above are confidence level distributions from a kinematic fit of γp → K+pπ−

Monte Carlo events to the (a) γp → K+pπ− and (b) γp → K+p(π−) hypotheses. Resolution for
these events is the product of GPP smearing of timing signals and the empirical smearing algorithm
for tracking signals.

4.1.3 Trigger Simulation

GSIM accounts for whether individual detector components were able to reconstruct a given track
in a Monte Carlo event. To accurately match the MC to the data, however, we must also take into
account the efficiency of the g11a hardware trigger. We have discussed the g11a triggering scheme
in greater detail in §2.5 and it should be noted that inefficiencies discussed in this section pertain
to the CLAS Level 1 trigger. We identify two types of inefficiency in the g11a trigger: detector
inefficiencies and logical inefficiencies.

Detector inefficiencies have been studied in great detail [62]. The kinematic fitter and confidence
level cuts were used to identify γp → pπ+π− events in which all three final-state tracks were
reconstructed. Only events for which the three final-state particles were reconstructed in different
sectors were considered. The trigger word written into the data stream at the time the event was
recorded indicated which sectors observed a coincidence between start counter and TOF wall, thus
setting the Level 1 trigger. In each of these events, at least two sectors had to have set the trigger
(otherwise, the event would not have been recorded). For each event, two tracks which set the
trigger were identified. An efficiency map was then created for the third particle based on whether
the trigger bit for that particle’s sector was set. Maps were generated as a function of φ and TOF
paddle in each sector for each particle type (proton, π+, π−).

An example of the trigger maps is given in Figure 4.2. One can notice structure in these maps
which points to inefficiencies in detector subsystems. Paddle 33 shows no occupancy for either
the proton or π−, indicating that it is non-functioning. Paddle 18 displays a low efficiency for the
proton and a φ-dependent efficiency for the π−, indicating incorrect tuning of its input to the trigger
(most likely, a high discriminator threshold). Other TOF paddles exhibit similar behavior. (Note
that several of these paddles have been cut from analysis, as described in §3.6.1). Because we can
identify these inefficiencies with specific elements or regions of the detector, we refer to them as
detector inefficiencies.

We implement these efficiency maps in a statistical manner. For each track in a Monte Carlo
event, we throw a random number n ∈ [0, 1]. If n is less than the efficiency given by the map for
the particle type in the track’s detector region, we count that track as having set the Level 1 trigger
in its sector. If a Monte Carlo event does not have at least two tracks which set the trigger in this
manner, the event is discarded. For the K+Λ channel, we apply the π+ map to K+ tracks based
on the particles’ similar ionization properties. We could not generate an efficiency map for the K+

because no suitable channel – other than K+Λ – exists for analysis.
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Figure 4.2: The figure above shows a sample trigger efficiency maps from the study of g11a [62]. The
two-dimensional histogram represents the probability that (a) a proton or (b) π− in the indicated
φ and TOF paddle will set the trigger in sector 1.

We have also tested the trigger efficiency maps to determine whether adding momentum depen-
dence to the the map calculation provides a more accurate description of the trigger efficiency (see
§7.3.2). In principal, the map should display some momentum dependence due to the lower inter-
action probability of higher-momentum particles. We have found no major momentum-dependence
to the trigger efficiency and thus deem the above treatment to be adequate.

4.1.4 Start Counter

We have discussed the g11a start counter in §2.3.2. Motivated by differences between our preliminary
differential cross sections and those of Robert Bradford, we have identified the start counter as the
source of a subtle, but important difference between data and Monte Carlo. The Λ is relatively
long-lived in comparison to other baryons produced in CLAS. Because of the similarity of the Λ’s
mean path length (cτΛ = 7.89 cm) and the distance from the target to the start counter (≈ 10
cm), there is a non-negligible probability that a Λ produced in the target will decay outside of the
start counter. For such an event, the neutral Λ would not create a hit in the start counter; thus,
coincidence between the start counter and TOF wall would not be registered in its sector. Even if
the K+ set the trigger in its sector, the Level 1 trigger would not be set. Thus, events for which the
Λ decays outside of the start counter are not recorded by in the data stream.

In order to reproduce this effect in the Monte Carlo, we tested two methods. First, we recon-
structed the Λ decay vertex using MVRT and the proton and π− momenta. We then cut any events
(from both data and Monte Carlo) for which the Λ decay vertex was outside of the physical volume
of the start counter. After testing this method, we abandoned it due to resolution issues caused
by the small opening angle of the proton and π−. A more detailed exposition of this cut and its
shortcomings can be found in §7.3.3.

Our final approach was to make a statistical cut on the Monte Carlo events. For a given MC
event, we used the event vertex (calculated using MVRT on the K+ momentum and idealized beam
location) and the Λ momentum, ~pΛ (reconstructed from proton and π− momenta) to calculate the
intersection of the Λ trajectory with the start counter. We refer to the distance between the vertex
and this intersection point along ~pΛ as d. We then calculated the Λ lifetime t in the lab frame as

t(β) = γτ = τ/
√

1− β2, (4.1)
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where τ = 2.632 × 10−10 s is the lifetime of a Λ at rest, and β is the velocity of the Λ calculated
from its momentum. We then calculated the mean distance δ that the Λ would have traveled prior
to decaying as

δ(β) = βct. (4.2)

We then constructed a probability P (β) that the Λ would have decayed after it traveled a distance
d (i.e. outside of the start counter) as

P (β) = e−d/δ(β) = e−d/(βct). (4.3)

Finally, we throw a random number n ∈ [0, 1]; if n is less than P (β), we discard the event. Note
that, unlike the cut on secondary vertex position described above, this cut is only applied to the
Monte Carlo events. More information on the construction and validity of this cut can be found
in [68].

4.2 Effects of Analysis Cuts on Monte Carlo

As a final check of the similarity between data and Monte Carlo, we investigate the signal lost
due to analysis cuts (confidence level, and particle identification). In order to extract an accurate
differential cross section, we must be sure that the analysis cuts affect data and MC in the same
way. If the covariance matrix that was tuned for the data were inaccurate for the MC, or if the MC
were simply not treating the γp → K+Λ channel properly, then applying a confidence level cut to
data and MC would not be consistent. Because we have seen (Figure 4.1) that the confidence level
distribution from the kinematic fit to the MC is flat, we are encouraged to think that GSIM and
the kinematic fitter are working properly. To support this, we fill missing mass off K+ histograms
for data and accepted Monte Carlo events from the three-track analysis before and after a 1%
confidence level cut and detector performance cuts are applied. Figure 4.3 shows the effects of the
skim and detector performance cuts on data events from runs 43810-43819 and accepted Monte
Carlo. To extract the number of data signal events, we fit the data histograms to a Gaussian and
fourth-order polynomial background. We then integrate the Gaussian signal functions over the range
(µd − 2.5σd, µd + 2.5σd), where µ and σ are the mean and width returned by the fit. This method
shows that ≈ 89.44% of the K+Λ signal events pass the cut. For the accepted Monte Carlo, no
fitting is necessary for signal extraction; all events in the distribution are K+Λ events. However,
we do fit the histograms to obtain mean and width (µMC and σMC). Fit to a Gaussian yields
µMC = 1.1158 GeV/c2 and σMC = 1.293 MeV/c2. We then integrate the Monte Carlo histograms
over the interval (µMC −σMC , µMC +σMC) and find that ≈ 88.95% of the Monte Carlo events pass
the confidence level cut, an impact consistent with that of the data.

In §3.2, we discussed possible short-comings of the kinematic fitter. The most prominent of these
is most likely its inability to handle the non-Gaussian errors due to energy loss of tracks in dense
detector regions. Due to the similarity of the effects of the confidence level cut on data and Monte
Carlo, we infer that such energy losses are correctly modeled by the detector simulator, GSIM.

We have shown in §3.5.1 that the number of K+Λ data events lost to our particle identification
cuts is about 0.11% for the three-track analysis and no greater than 0.43% for the two-track analysis.
To make sure that the particle identification cuts have the same effect on Monte Carlo events, we
need only plot the calculated mass distribution for the Monte Carlo events. This plot is provided
for the three-track final state in Figure 4.4. We see that region (iii), the region corresponding to
pπ+π− background, is essentially empty. Region (ii) shows a small number of K+pπ− events which
passed the 1% confidence level cut in the incorrect positive track permutation (i.e. proton identified
as K+ and K+ identified as proton). By cutting events in regions (ii) and (iii), we omit less than
0.7% of the Monte Carlo events, on par with the effect of our particle identification on the data. We
include this loss of signal as a systematic uncertainty.
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Figure 4.3: The histograms in (a) show the missing mass off K+ distribution for all events in runs
4381-43819 of g11a before (unshaded) and after (shaded) a 1% confidence level cut is applied. Fits
to a gaussian and fourth-order background are shown in blue and red. The histograms in (b) show
Monte Carlo events before and after the confidence level cut. A fit to a Gaussian is displayed in
blue.

Also worth noting is the existence of Monte Carlo events in region (iv) of the calculated mass
plane. This region is populated by events for which the proton timing is incorrect, forcing the
calculated proton mass to be near that of a K+. This effect is also present in the data and is
described in greater detail in 3.5.

Particle identification cuts for the two-track analysis are the same for
√
s > 1.66 GeV. For

sqrts < 1.66 GeV, however, our additional cut that requires mp < mK+ + 0.75 GeV must be tested
on the Monte Carlo. Figure 4.5 shows the effects of the particle identification cuts on the missing
mass off K+ distributions of Monte Carlo events with

√
s < 1.66 GeV. By fitting Gaussian signal

and quadratic background functions to the distributions, we find that only 3.4% of the Monte Carlo
events in this energy range are lost to the PID cuts. We have shown in Figure 3.9 that no appreciable
amout of data signal is removed by this cut. Thus, we include this 3.4% loss of Monte Carlo as a
systematic uncertainty for

√
s < 1.66 GeV.

4.3 Systematic Study of Acceptance Uncertainty

In order to study the accuracy of our acceptance calculation, we are able to exploit the CLAS
detector’s design and produce acceptance-corrected yields from each of the six sectors independently.
By comparing these independent acceptance corrected yields to the mean yield for the entire detector,
we may estimate the acceptance uncertainty’s contribution to the uncertainty of our final results.

To begin this study, we identify events with individual sectors based on the location of K+

tracks (i.e. an event with K+ track in sector 2 is assigned to sector 2) in each of thirteen 10-
MeV-wide

√
s bins. Because we are ultimately interested in the effects of the uncertainty on our

differential cross section and polarization measurements, we fill histograms in cos θK+

CM for each of
the independent sectors. The data yields from each sector in the

√
s = 2.005 GeV bin are shown

in Figure 4.6(a). Note that the uncorrected data yields are very different between the sectors due
to sector-dependent detector inefficiencies (TOF paddles, drift chamber wires). We then acceptance
correct these data yields using our calculated acceptance in each sector. Figure 4.6(b) shows the
acceptance-corrected yields for each sector plotted with the mean acceptance corrected yield. It is
encouraging to see that even though the data yields from independent sectors were quite different,
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Figure 4.4: Shown above is the calculated proton mass versus calculated K+ mass distribution for
all Monte Carlo events. The number of events in regions (ii) and (iii), those cut by our particle
identification cuts, is very small.
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Figure 4.5: Figure (a) above shows the missing mass off K+ distribution of all Monte Carlo events
with

√
s < 1.66 GeV. Fit to a Gaussian and quadratic background show that there are roughly

3.87 × 105 events in the signal peak. Figure (b) shows the distribution of events cut by particle
identification. Fitting reveals 13400 events in this peak, only 3.4% of the total.
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√
s bins used Average

√
s ση

1.805, 1.905 1.855 0.0314
2.005, 2.105 2.055 0.0486
2.205, 2.305 2.255 0.0486
2.455, 2.555 2.505 0.0430
2.605, 2.655 2.630 0.0680

2.705, 2.755, 2.805 2.755 0.0521

Table 4.2: The table above lists bins and results from our study of acceptance uncertainty.

acceptance corrections have made all of the sectors roughly equal. Figure 4.6(c) displays the ratios of
each sector’s acceptance-corrected yield. There is no apparent cos θCM dependence in these ratios.

Some discrepancies still exist between the independent sectors and the mean. We wish to de-
termine whether these discrepancies can be accounted for by statistical fluctuations or whether we
need to assign a supplemental uncertainty due to our acceptance calculation. Here, we closely follow
the work in [4]. At this point, errors on the acceptance corrected yields are purely statistical (due
to data and Monte Carlo occupancies). For data obeying a normal distribution, we expect that∑

c,s

Θ(σ2
c,s − (yc,s − yc)2) ≈ 0.68N, (4.4)

where s and c denote sector and cos θCM bin, σc,s is the (statistical) error associated with acceptance
corrected yield yc,s, yc is the mean acceptance corrected yield, Θ is the Heaviside step function, and
N is the total number of points considered. Eq. 4.4 represents the ideal situation where 68% percent
(one standard deviation) of the yc,s fall within statistical error of the mean value µc. When we test
this ideal hypothesis on the acceptance corrected yields in the

√
s = 2.005 GeV bin, we find that

only 59.3% of the points satisfy this criterion. Thus, we can assign a supplemental error, ση, which
we attribute to inaccuracy of our acceptance calculation:∑

c,s

Θ(σ2
c,s + (σηyc,s)2 − (yc,s − yc)2) = 0.68N. (4.5)

The discrete nature of the sum in equation 4.5 makes an explicit calculation of ση difficult. In order
to determine ση, we calculate the percent of points that satisfy the Heaviside function in eq. 4.5 for
increasing values of ση. A plot of these values for the

√
s = 2.005 GeV bin is shown in Figure 4.7(a).

We then perform a linear fit to these values to obtain, ση, the error which satisfies eq. 4.5. In this
bin, we find ση = 4.86%.

We then perform this same study considering the other twelve
√
s bins. In order to bolster

statistics, we add the acceptance corrected yields from adjacent
√
s bins. The bins considered,

combination method, and ση values are given in Table 4.2. We provide a plot of the extracted
acceptance error versus center-of-mass energy in Figure 4.7(b). A fit of these points to a linear
function shows that the error is characterized by

ση(
√
s) = 0.0243

√
s− 0.00890. (4.6)

For the energy range of our analysis, this characterization dictates errors between ση(1.635GeV ) =
3.08% and ση(2.835GeV ) = 6.00%. Though this uncertainty has been calculated using the three-
track analysis only, we show in §6.2.2 that this acceptance uncertainty accounts for differences
between results of the two analyses.
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Figure 4.6: The plots above show steps in the acceptance uncertainty calculation for the
√
s = 2.005

GeV bin. Plot (a) shows the sector-dependent data yields, whereas plot (b) shows theses yields after
acceptance correction along with the mean acceptance-corrected yield. Plot (c) shows the ratios of
each sector’s acceptance corrected yield to the mean.
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Figure 4.7: Plot (a) shows the percentage of acceptance corrected yield points that satisfy the
Heaviside function in eq. 4.5 versus ση. A fit of the points to a straight line is shown in red and is
used to determine the value of ση which satisfies eq. 4.5. Values of ση versus center-of-mass energy
are shown in (b).

4.4 Target Characteristics

In order to calculate a production probability from our data, we need to have an idea of how
many target protons were available to the photon beam. Such information is characterized by the
target length, atomic properties, and density. The target dimensions and substance (liquid H2)
are discussed in §2.3.1. The density of the target, however, is not a static quantity. Density is
related to the target temperature and pressure, which is measured for each CLAS run. From these
measurements, the density has been calculated on a run-by-run basis [4]. It is found that the average
g11a target density, ρ, for the g11a run period is

ρ = 0.07177
g

cm3
(4.7)

with a variance of
σρ = 6.776× 10−9 g

cm3
, (4.8)

or roughly 0.1%.

4.5 Photon Normalization

The final ingredient that we need to calculate a production cross section is the number of photons
incident on the target during our experiment, the so-called photon flux. To calculate the flux, we
make use of the gflux, a standard CLAS analysis package [69]. Typically, photon fluxes are observed
at low current by comparing hits in the photon tagger and the resulting hits in an instrument such
as the CLAS total absorption counter (TAC) located in front of the target. Because g11a was
collected with a much higher current (≈60 nA) than the TAC could handle, the gflux method
was devised. gflux uses a clever method of determining the rate of electron hits in the tagger T-
counters which are not associated with a production trigger in CLAS. The rate for each T-counter
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in each run is determined by sampling T-counter hits during a fraction of the run. This rate is
then used to calculate the total number of electrons that hit each T-counter. gflux then corrects for
the detector live time, the fraction of the run for which the detector was “ready” to record data.
(CLAS experiences dead time when its data acquisition system is busy writing events.) Finally, gflux
corrects each total T-counter flux for the fraction of photons which do not pass through the volume
of the target, a roughly 10% T-counter-dependent correction.

During preliminary analysis of the g11a dataset, inconsistencies in current dependence of flux-
normalized data yields were found. This effect has been studied and corrected [4]. Flux-normalized
pω yields were calculated from four separate g11a runs: 43532, 43582, 44106, and 43626. The four
runs used were chosen for their differing beam currents (between 30 and 70 nA). CLAS live times
were then calculated using two methods: by considering the DAQ scaler clocks (the same method
used by gflux ) and by considering noise measured by the Faraday cup. In order to make the two
live times roughly agree, the scaler clock live time had to be applied twice (i.e. correcting by the
square of the live time correction). After applying this correction, iw was found that the current
dependence of the normalized yield was removed. We apply this correction to photon fluxes for all
runs used in this analysis.

For the purposes of this analysis, it is useful to obtain the flux in each of our 10-MeV-wide
√
s

bins. To do so, we calculate the flux per T-counter for each run using gflux applying the g11a live
time correction. We then rebin the flux according to each T-counter’s associated E-counters and
divide these fluxes among the appropriate

√
s bins. We then sum the flux over all runs used in our

analysis to get the total flux per
√
s bin.

Finally, we need to account for the effects of the g11a trigger. Recall that the tagger Master-
Or (MOR) only collected signals from the first 40 tagger T-counters (discussed in §2.5). Events
generated by photons which would send the recoil electron into T-counters between 41 and 61 would
not be recorded unless a second recoil electron happened to hit one of the first 40 T-counters in the
same tagger window. Poisson statistics were used to correct for these untriggered T-counters [4].
It was found that the cut-off between triggered and untriggered tagger energies was at Eγ ≈ 1.57
GeV, or

√
s ≈ 1.955. The probability that an event with

√
s ≤ 1.955 was recorded due to a

separate electron setting the MOR in another T-counter was calculated to be Ptrig = 0.46669. This
probability was then used to effectively scale-down the flux in all bins with

√
s ≤ 1.955 GeV. Plots

of flux-normalized yields v. W show that this correction restores continuity to our normalized yields
(Figure 4.8). Note that we cannot correct the bin centered at 1.955 GeV in a consistent manner
due to the energy cut-off of the trigger. In addition, we note that the flux-normalized yields in the√
s = 2.735 GeV and

√
s = 2.745 GeV bins do not follow the general trend of the surrounding bins.

These faulty
√
s bins are attributed to an improperly-functioning T-counter (T9).

4.6 Flux-normalized Yields

As a final check of our photon flux calculation, we examined the flux-normalized yields for each run.
We can calculate Nr, the flux-normalized K+Λ yield from run r as

Nr =
Yr

Fr
, (4.9)

where Yr and Fr are the data yield and total (corrected) photon flux from run r, respectively. σr, the
error in Nr for run r reflects statistical errors for the data yield and photon flux for that run. Figure
4.9 shows the flux-normalized yields per run for runs used in this analysis. We note that several
runs exhibit N ’s that are far from the average value. A plot of the extracted data yields shows that
for several of these runs (43900,44036,44101,44102), an inaccurate N is due perhaps to low statistics
(these are short runs). Runs 43588 and 43757 exhibit abnormal N ’s, but are sufficiently populated.
We cut these runs from further analysis.
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Figure 4.8: Shown above are the flux-normalized yields v.
√
s before (a) and after (b) the untriggered

T-counter correction. The correction restores rough continuity to the trend of the yields versus
√
s.

The blue line in each plot marks the energy of the trigger cut-off,
√
s ≈ 1.955 GeV.

For the remaining runs, we calculate the weighted mean flux-normalized yield to be

N =

∑
r

Nr/σ
2
r∑

r

1/σ2
r

= 2.617× 10−9. (4.10)

Using this N , we may then calculate the mean variance in N , σ2, weighted by the σr as

σ2 =

∑
r

(Nr −N )2/σ2
r∑

r

1/σ2
r

= 8.691× 10−21, (4.11)

making
√
σ2/N ≈ 3.5%. As the photon flux is an important part of the differential cross section

extraction, we quote the this variance as a systematic uncertainty in our calculations in Chapter 6.

4.7 Summary

To calculate acceptance for the γp → K+pπ− reaction, we have processed 300 million raw Monte
Carlo events using GSIM, a GEANT-based simulation of the CLAS detector. We then processed
the resulting accepted Monte Carlo using the same analysis software as was used for data events.
Trigger effects not included in GSIM were accounted for by a trigger efficiency cut and Λ decay/start
counter simulation.

Uncertainties as pertain to differential cross section and recoil polarization calculations have been
investigated. We assign a 3.4% systematic uncertainty to bins with

√
s < 1.66 GeV due to MC signal

lost to particle identification cuts. In all other
√
s bins, we assign a 0.7% uncertainty due to signal

loss to PID cuts. A 0.1% systematic uncertainty is attributed to fluctuations in target density. We
have estimated the uncertainty in our acceptance calculation to be

√
s-dependent and on the order

of 5%. Photon flux has been calculated using gflux, and we have calculated the variance in our
flux-normalized K+Λ yields to be roughly 3.5%.



CHAPTER 4. ACCEPTANCE CALCULATION AND NORMALIZATION 63

run number
43500 43600 43700 43800 43900 44000 44100

da
ta

 y
ie

ld

10

210

310

(a)

run number
43500 43600 43700 43800 43900 44000 44100

fl
ux

-n
or

m
al

iz
ed

 y
ie

ld

-810

(b)

Figure 4.9: Shown above are K+Λ data yields (a) and flux-normalized yields (b) per run from the
g11a three-track analysis. Several runs show abnormal flux-normalized yields. Runs 43900, 44036,
44101, and 44102 are due to low statistics.



Chapter 5

Partial Wave Analysis Techniques
and Amplitude Formulæ

At the heart of our analysis is the powerful partial wave analysis software suite developed by the
PWA Group at Carnegie Mellon [74, 4]. The methods contained therein are essential to our search
for excited nucleon intermediate states in the γp → K+Λ reaction; however, we also make use of
them in our extraction of differential cross section and polarization results. To this end, we have
exploited both unbinned maximum likelihood and binned χ2 fitting techniques. In this chapter,
we outline the basis and some of the formulæ involved in our fitting procedures. We conclude the
chapter by providing an introduction to the amplitudes we have used to characterize the γp→ K+Λ
reaction.

5.1 Notation

In what follows, we adopt the notation set forth in [4]. We denote the photon, target proton,
K+, and Λ four-momenta by k, pi, q, and pΛ, respectively. In the center-of-mass frame, we align
the z-axis with the direction of the photon momentum, k̂, and use this as the axis of angular
momentum quantization. For a given particle x, we denote the mass and spin projection of x by wx

and mx, respectively. The Mandelstam variables are defined in the typical manner for two-to-two
scattering [70]:

s = (pi + k)2 = (q + pΛ)2 (5.1a)
t = (k − q)2 = (pi − pΛ)2 (5.1b)
u = (k − pΛ)2 = (pi − q)2. (5.1c)

We represent the Lorentz-invariant phase space element as dΦ(X) = φ(X)dX, where X is the set
of all independent kinematic variables describing the γp → K+Λ → K+pπ− reaction. We assume
the detector acceptance to be dependent upon kinematics and denote it by η(X). For amplitude
formulæ, we denote the Dirac γ matrices (in the Dirac basis) as

γ0 =
(

1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
0 1
1 0

)
, (5.2)

where 1 is the 2× 2 identity matrix and σi are the Pauli spin matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (5.3)

64
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In fitting formulæ, we denote the set of fit parameters as ~x. We may then write the Lorentz-
invariant transition amplitude M as

|M(~x,X)|2 =
∑

mi,mγ ,mf

|
∑

a

αa(~x,X)Aa
mi,mγ ,mf

(X)|2, (5.4)

where αa are complex functions dependent upon fit parameters and kinematics, and Aa
mi,mγ ,mf

(X)
are the known parts of the partial wave amplitudes based on kinematics and spin projections of the
target, photon, and final state baryon (mi, mγ , and mf , respectively). Here, the sum over a denotes
the sum over different amplitudes that contribute to the process. The transition matrix element
expressed above represents the full reaction, γp→ K+pπ−, i.e. including the Λ → pπ− amplitude.

Once we have extracted the differential cross section and recoil polarization observables from our
analysis, we perform binned least-squares fits to these results. We thus define the reduced transition
matrix amplitude Mr, which describes only the γp→ K+Λ portion of the reaction, as

|Mr(~x,X)|2 =
∑

mi,mγ ,mΛ

|
∑

a

αa(~x,X)Aa
mi,mγ ,mΛ

(X)|2, (5.5)

where mΛ represents the hyperon spin projection. While the binned χ2 fit lacks the stability of the
event-based fit, it allows us to include results from other analyses in our fits. These observables
are unmeasurable in g11a, namely the double polarization observables Cx and Cz which have been
measured in CLAS [13].

5.2 Extended Maximum Likelihood Fitting

In order to extract differential cross sections and polarization results, we rely on an event-based
fit. The event-based fit differs from the more common χ2 fit in that it requires no angular binning
of the data. Whereas a χ2 fit will base the minimization of a fit function on its estimation of a
few points, the event-based fit treats each event individually, and thus has many more degrees of
freedom. For this reason, the event-based fit is generally more stable. We have divided our dataset
into 10-Mev-wide

√
s bins to facilitate interpretation of our PWA results. In each of these

√
s bins,

we perform a maximum likelihood fit to relevant partial wave amplitudes. The work in this section
follows that of Chung [71] and Williams [4].

5.2.1 The Extended Likelihood Function

In any fitting procedure, we wish to find estimators, x̂, for the fit parameters ~x. In a maximum
likelihood fit, the fit function that grants us access to these parameters is the extended maximum
likelihood function defined by

L =
(
nn

n!
e−n

) n∏
i

P(~x,Xi) (5.6)

in a given
√
s bin with n data events. Here P(~x,Xi) is the probability density function (discussed

below) and the term in brackets is the Poisson probability of observing n events given an expected
number n. For an event i, the probability density function is represented by

P(~x,Xi) =
|M(~x,Xi)|2η(Xi)φ(Xi)

N (~x)
(5.7)

where φ(Xi) is the phase space element and η(Xi) is the detector acceptance for event i. N is a
normalization factor chosen such that the integral of P(~x,Xi) over all possible event kinematics
is unity. Maximizing (5.6) by varying the fit parameters, ~x, yields the estimators, x̂, which best
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describe the data. Recall that the transition probability M(~x,Xi) for event i contains the partial
wave amplitudes weighted by the ~x-dependent α’s. Thus, by maximizing L we are able to determine
the strengths and phases of each partial wave.

A vital part of the likelihood method is the calculation of n, the expected number of events in
each

√
s bin. In order to calculate n, we begin with the empirical definition of σ, the total cross

section for the γp→ K+Λ reaction

σ =
N

Fρt`tNA/At
. (5.8)

Here, N is the number of γp→ K+Λ scattering events, F is the number of incident photons, NA is
Avogadro’s number, and ρt, `t, and At are the density, length, and atomic weight of the target. We
may also write the cross section in term of the transition probability for the scattering event as

σ =
1
4

(2π)4

2(s− w2
p)

∫
|M(~x,X)|2dΦ(X), (5.9)

where the factor of if 1/4 comes from averaging over the spins of the initial state γ and proton. By
equating (5.8) and (5.9), we obtain the following expression for the expected number of scattering
events:

N =
Fρt`tNA

At

(2π)4

8(s− w2
p)

∫
|M(~x,X)|2dΦ(X). (5.10)

It is important to keep in mind that N is the expected number of scattering events, not necessarily
the number that we would have observed due to imperfect detector acceptance. In order to account
for our detector’s imperfect acceptance, we simply fold the kinematically-dependent acceptance into
the integral in (5.10). Thus, we calculate the number of scattering events which we would have
observed to be

n =
1
4
Fρt`tNA

At

(2π)4

8(s− w2
p)

∫
|M(~x,X)|2η(X)dΦ(X). (5.11)

As presented in Chapter 4, the acceptance of the CLAS detector is very complicated; we have no
way of characterizing it analytically as a function of kinematic variables. Thus, in order to perform
the integral in (5.11), we rely on GSIM, a GEANT-based Monte Carlo simulation. We generate
Nraw γp → K+Λ events according to phase-space kinematics. We can then substitute the integral
(5.11) with a sum over the raw Monte Carlo events∫

|M(~x,X)|2η(X)dΦ(X) ≈
∫
dΦ(X)
Nraw

Nraw∑
j

η(Xj)|M(~x,Xj)|2. (5.12)

Each raw event, j, is then processed with GSIM and all analysis cuts resulting in an acceptance
η(Xj) = 0, 1 for that event. Because we treat each raw event individually, η(Xj) takes the values 0
or 1 for each j. We can then simplify (5.12) as∫

|M(~x,X)|2η(X)dΦ(X) ≈
∫
dΦ(X)
Nraw

Nacc∑
j

|M(~x,Xj)|2, (5.13)

where the sum is now over only the Nacc events which passed our detector acceptance simulation
and analysis cuts (accepted events).

All that remains to in our calculation of n is to perform the integral over phase space,
∫
dΦ(X).

Calculating the integral for two-to-two scattering is rather straight-forward and can be found in
many texts (see [70]):∫

dΦ(X) =
∫
δ4(pi + k − pΛ − q)

d3~pΛ

(2π)32EΛ

d3~q

(2π)32EK+
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=
1

4(2π)6

∫
δ(
√
s− EΛ − EK+)

|~pΛ|2dΩ
EΛEK+

=
1

4(2π)6

∫
|~pΛ|2dΩ√

s

=
[(s− (wΛ + wK+)2)(s− (wΛ − wK+)2)]1/2

8(2π)5s
. (5.14)

We can now combine (5.11), (5.13), and (5.14) to write an expression for the expected number
of observed data events as

n =
S(s)
Nraw

Nacc∑
j

|M(~x,Xj)|2. (5.15)

where

S(s) =
Fρt`tNA

At

[(s− (wΛ + wK+)2)(s− (wΛ − wK+)2)]1/2

64πs(s− w2
p)

(5.16)

has no dependence upon fit parameters or kinematics other than s.
We can also use this Monte Carlo method to impose the normalization of the probability density

function P(~x,X). Enforcing unit normalization of P(~x,X),∫
P(~x,X) =

1
N (~x)

∫
|M(~x,X)|2η(X)φ(X)dX = 1, (5.17)

implies that

N (~x) =
∫
|M(~x,X)|2η(X)dΦ(X). (5.18)

Once again, we can perform the integral over kinematic variables using the Monte Carlo method:

N (~x) ≈
∫
dΦX
Nraw

Nacc∑
j

|M(~x,Xj)|2 = C(s)n, (5.19)

where

C(s) =
8(s− w2

p)
(2π)4

At

Fρt`tNA
. (5.20)

5.2.2 Log Likelihood

As n becomes large, the product over all data events in (5.6) becomes more complicated. As the
minimization algorithm that we employ uses the partial derivatives of L with respect to individual
fit parameters, this large product can become computationally intensive. To ease calculation and
optimization of the likelihood, we take the negative natural logarithm of L to be left with

− ln(L) = −
n∑
i

P(~x,Xi)− n lnn+ lnn! + n

= −
n∑
i

ln
(
|M(~x,Xi)|2η(Xi)φ(Xi)

)
+ n+ lnn! + n ln C(s)

= −
n∑
i

ln
(
|M(~x,Xi)|2

)
−

n∑
i

ln (η(Xi)φ(Xi)) + n+ lnn! + n ln C(s). (5.21)

Because the − ln(L) is a monotonically decreasing function of L, minimization of − ln(L) implies
maximization of L. Note that only two of the terms in (5.21) are dependent upon the fit parameters;
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in order to minimize − ln(L) we need only consider these terms. Thus, we can reduce (5.21) to only
terms that interest us for fitting:

− ln(L) = −
n∑
i

ln |M(~x,Xi)|2 + n+ const

= −
n∑
i

ln |M(~x,Xi)|2 +
S(s)
Nraw

Nacc∑
j

ln |M(~x,Xj)|2 + const. (5.22)

A more detailed treatment of likelihood fitting can be found in [4].

5.2.3 Background Weighting

For our two-track final-state topologies (both g11a and g1c), we use the PWA Group’s background
subtraction method to assign a Qi value to each event (see §3.8 or [66]). This Qi is the proba-
bility that event i is a signal event. We have seen that the majority of background events for the
γp→ K+pπ− channel are events with a π+pπ− for which the π+ is mis-identified as a K+. Because
K+Λ is the only state with associated strangeness possible in this energy regime (dictated by miss-
ing mass off K+ < 1.14), we know that any non-signal events in our data sample are non-strange
background events. Because of this, we are able to treat the amplitudes for signal and background
events as non-interfering. Thus, we can include the Qi factor for each event in the likelihood function
as [4]

− ln(L) = −
n∑
i

Qi ln |M(~x,Xi)|2 +
S(s)
Nraw

Nacc∑
j

ln |M(~x,Xj)|2 + const. (5.23)

5.3 Least-Squares Fitting

In addition to the log-likelihood fitting, our analysis also makes extensive use of the more common
least-squares fitting method. Once we have extracted differential cross section and recoil polarization
results using the likelihood method, we are able to perform least-squares fits to these data. For this
analysis, the benefit of the least-squares fit is that it allows us to also fit to results of other analyses
which g11a cannot measure. In the case of K+Λ photoproduction, these supplementary results are
the double-polarization observables, Cx and Cz, that were measured by CLAS in 2004 [13].

The fundamental difference between the least-squares fit and the likelihood method described
in the previous section is the binning of the data. While the likelihood method treats each event
in a

√
s bin independently (each event is then a degree of freedom for the fit), the least-squares

method considers only the results derived from these events. We say that the least-squares fit is a
“binned” fit because each point to which we fit (i.e. dσ/dt point at a value of cos θCM in a specific√
s bin) represents all of the events that fall within the range of that point. Due to the greatly

reduced number of degrees of freedom, the least-squares fit is generally much less computationally
intensive. In a typical

√
s bin for our analysis, event-based and least-squares fits to the same set of

partial waves may have ≈ 20, 000 and ≈ 35 degrees of freedom, respectively. The vastly decreased
number of degrees of freedom does lead to a loss in stability of fit results which can be mitigated by
performing multiple fit iterations.

As in the likelihood fit, we seek to determine the estimators, x̂, for the set of fit parameters
~x for n data points. Here the n data points are the measured observables Oi(Xi) associated with
the kinematic values Xi. These measurements may be either dσ/dt, recoil polarization, or double-
polarization observables, but for now, we consider only one type. The fit function in a least-squares
fit is the χ2 defined as

χ2 =
n∑
i

(Oi(Xi)− Ô(~x,Xi))2

σ2
i

, (5.24)
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where σi is the error associated with Oi(Xi) and Ô(~x,Xi) is the hypothetical value of observable
O built from fit parameters and the kinematic variables of point i. For measurements pertaining to
this analysis, the Ô(~x,Xi) are functions of αa(~x,Xi)Aa

mi,mγ ,mΛ
(Xi) for the αa and A given in (5.5).

5.3.1 Calculation of dσ/dt

In the case where Oi(Xi) = dσ
dt (Xi), we are able to calculate the differential cross section by consid-

ering (5.9). We rewrite the expression for the total cross section in differential form:

dσ(~x,X) =
1
4

(2π)4

2(s− w2
p)
|M(~x,X)|2dΦ(X). (5.25)

We then exploit the expression for the phase space element dΦ(X) in (5.14), allowing us to write
(5.25) as

dσ(~x,X) =
1
4

(2π)4

2(s− w2
p)
|M(~x,X)|2 1

4(2π)6
|~pΛ|dΩ√

s
. (5.26)

Using the expression for t given in (5.1), we can write t explicitly as

t = w2
p + w2

Λ + 2EiEΛ + 2|~pi||~pΛ| cos θCM

= w2
p + w2

Λ + 2EiEΛ +
s− w2

p√
s
|~pΛ| cos θCM , (5.27)

where cos θCM is the center-of-mass production angle of the K+. Taking the differential and rear-
ranging leaves

d cos θCM =
√
s

s− w2
p

dt

|~pΛ|
. (5.28)

Substituting this into the solid angle element in (5.26) gives

dσ(~x,X) =
1
4

(2π)4

2(s− w2
p)
|M(~x,X)|2 1

4(2π)6
|~pΛ|√
s

√
s

s− w2
p

dtdφ

|~pΛ|

=
1

32(2π)2(s− w2
p)2

|M(~x,X)|2dtdφ. (5.29)

Integrating over φ yields
dσ

dt
(~x,X) =

1
64π(s− w2

p)2
|M(~x,X)|2. (5.30)

Calculations of the other observable quantities (PΛ, Cx, Cz) are left to Chapter 7.

5.4 Fitting Multiple Datasets

We often find it advantageous to include information from multiple
√
s bins into a single fit. In such

situations, we must construct a fit function (χ2 or L) which accounts for all datasets equally. We
construct this total fit function, ψ, by simply summing the fit functions from all datasets:

ψ =
Nd∑
d

ψd, (5.31)

where ψd is the fit function from dataset d, and Nd is the total number of datasets being fit. We
should note that for (5.31) to be consistent, the ψd must all be either χ2 or − ln(L) functions.
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5.5 MINUIT

In order to perform fits with many degrees of freedom, significant computing power is needed.
Fortunately, the software which we use to handle the minimization of fit functions and calculation
of fit parameter errors, MINUIT, is an efficient, well-vetted standard in the experimental physics
community [72].

We specifically employ a MINUIT minimization algorithm called MIGRAD, which is based upon
the Davidon-Fletcher-Powell (DFP) variable metric method. The DFP is an iterative process which
assumes that the gradient ~g(~x) = ~∇F (~x) of the minimization function F (~x) with respect to the fit
parameters ~x can be calculated explicitly. In the majority of our fits, we supply MIGRAD with
randomized initial values, ~x0, of the fit parameters. MIGRAD then uses the gradient of ~g(~x) to find
another value of the fit parameters, ~x1, for which F (~x1) < F (~x0). The ~x0 are then replaced by the ~x1,
and a new set of fit parameters, ~x2 is found in the same manner. MIGRAD repeats this process until
the difference in the minimization function between consecutive iterations, δF ≡ F (~xn)− F (~xn−1),
is less than some user-defined tolerance.

In order to speed the calculations, we supply MIGRAD with partial derivatives of the fit functions
with respect to the fit parameters. In the case of the log-likelihood fit,

∂(− lnL)
∂xj

= −
n∑
i

Qi

(
1

|M(~x,Xi)|2
∂|M(~x,Xi)|2

∂xj

)
+
S(s)
Nraw

Nacc∑
i

∂|M(~x,Xi)|2

∂xj
. (5.32)

For the least-squares fit to differential cross section measurements, the gradients can be computed
as

∂χ2

∂xj
=
(

1
64π(s− w2

p)2
∂|M(~x,Xi)|2

∂xj

) n∑
i

2
σ2

i

(
dσ

dt
(~x,Xi)−

dσ

dt

)
. (5.33)

For both cases, we compute the partial derivatives of the |M(~x,X)|2 as

∂|M(~x,Xi)|2

∂xj
=

∑
mi,mγ ,mf

2<

(∑
a

∂αa(~x,Xi)
∂xj

Aa

∑
a′

αa′(~x,Xi)A∗a′(Xi)

)
. (5.34)

5.6 Partial Wave Amplitudes

The theoretical basis for our partial wave analysis has been developed by M. Williams and C.
Meyer of the CMU PWA Group. The group’s method uses a covariant framework to construct
fully Lorentz-invariant amplitudes, removing any frame-dependence to calculations. The foundation
of this technique is the eponymous Rarita-Schwinger presented in [73]. In this framework, we use
the Dirac spinors and polarization and angular momentum tensors familiar to quantum field theory
calculations to describe initial and final states in our analysis. We combine integer-spin polarization
tensors and Dirac spinors to create polarization tensors for the N∗ states.

The complexity of the resulting amplitudes and the overwhelming number of events we consider
in an event-based fit requires powerful and efficient computational methods. (Recall that likelihood
fitting requires us to compute the complex value of each amplitude for each data, accepted and raw
Monte Carlo event.) The qft++ package developed by M. Williams is a C++ computation package
that allow us access to the machinery of covariant field theory calculations via an elegant interface
[74]. For event-based fits, we use qft++ to calculate these amplitudes explicitly based on the 4-
vectors associated with individual particles in each event. For binned fits, we generate 4-vectors
corresponding to the kinematics represented by fit points. We then calculate amplitudes based on
these kinematics and calculate observables from these amplitudes.

In this chapter, we provide formulæ for the amplitudes used in this analysis. Amplitudes describ-
ing resonant processes (excited nucleon intermediate states) are not specific to this analysis, and a
more detailed treatment can be found in [4].
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5.6.1 Fundamentals

Here we present the basic building blocks of the covariant tensor formalism. The construction of
these objects can be found in [75] and [4]. The Dirac spinors u representing a spin- 1

2 particle with
momentum p, energy E, mass w, and spin polarization m = ± 1

2 are denoted by

u(p,m) =
√
E + w

(
χ

~σ·~p
E+wχ

)
(5.35)

where χ is the two-component spinor of the particle. In order to preserve Lorentz invariance, we
have

u = u†γ0. (5.36)

We can write the polarization vector εµ(p,m) for a spin-1 particle with momentum p and spin
polarization m as

εµ(p,m) = Λµ
ν(p)εν(0,m), (5.37)

where εν(0,m) are the rest-frame polarization vectors constructed to be the eigenvectors of the S2

and Sz angular momentum operators:

εν(0,±1) = ∓ 1√
2
(0, 1,±i, 0), εν(0, 0) = (0, 0, 0, 1). (5.38)

We can use the spin-1 polarization vector to construct the rank-2 polarization tensor, εµν(p,m),
which describes a spin-2 particle:

εµν(p,m) =
∑

m1,m2

(1m1 1m2|2m)εµ(p,m1)εν(p,m2), (5.39)

where (1m1 1m2|2m) is the Clebsch-Gordon coefficient which couples spin (1m1) and (1m2) states
to a spin (2m) state. For integer J ≥ 2, this process is generalized to build the rank-J polarization
tensor which describes a spin-J particle:

εJµ1µ2...µJ
(p,m) =

∑
mJ−1,m1

((J − 1)mJ−1 1 m1|Jm)εµ1µ2...µJ−1(p,mJ−1)εµJ
(p,m1). (5.40)

We can now combine (5.40) and (5.35) to construct the polarization tensor for a half-integer-spin
particle with J = n + 1

2 ≥
3
2 . This rank-n tensor is built from the spin-n polarization tensor and

the spin- 1
2 Dirac spinor as

uµ1µ2...µn(p,m) =
∑

mn,m 1
2

(nmn
1
2
m 1

2
|Jm)εµ1µ2...µn(p,mn)u(p,m 1

2
). (5.41)

We construct integer-spin projection operators as

PJ
µ1µ2...µJν1ν2...νJ

(p) =
∑
m

εµ1µ2...µJ
(p,m)ε∗ν1ν2...νJ

(p,m) (5.42)

and half-integer-spin projection operators as

PJ
µ1µ2...µJν1ν2...νJ

(p) =
1

2w

∑
m

uµ1µ2...µJ
(p,m)uν1ν2...νJ

(p,m). (5.43)

Finally, for two particles a and b with momenta pa and pb, we construct the spin-` orbital angular
momentum tensor L(`)

µ1µ2...µ` as

L(`)
µ1µ2...µ`

(pab) = (−)`P(`)
µ1µ2...µ`ν1ν2...ν`

(P )pν1
abp

ν2
ab...p

ν`

ab, (5.44)

where P = (pa + pb) and pab = 1
2 (pa − pb) are the total and relative momenta of the ab system.
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5.6.2 The Λ → pπ− Decay Amplitude

Because we concern ourselves with extraction of the Λ recoil polarization, it is necessary to include
the amplitude for the Λ → pπ− decay explicitly in our amplitudes. We follow the treatment of [76],
which writes the transition amplitude as

AΛ→pπ− = up(A−Bγ5)uΛ

=
(
Ep + wp

2wp

)1/2

χ†p

(
A+B

~σ · ~pf

Ep + wp

)
χΛ (5.45)

where

up =
(
Ep + wp

2wp

)1/2(
χ†p,

~σ · ~pf

Ep + wp
χ†p

)
(5.46)

uΛ =
(
χΛ

0

)
, (5.47)

are the 4-component Dirac spinors in the Λ rest frame and A and B are constants. In order to
calculate the values of A and B from measured quantities, we follow [76] and rewrite (5.45) as

AΛ→pπ− =
(
Ep + wp

2wp

)1/2

χ†p(x+ y~σ · n̂)χΛ, (5.48)

with x = A, y = |~pf |B/(Ef + wp), and n̂ = ~pf/|~pf | denoting the unit vector along the direction of
the proton momentum. These parameters can be related to the quantities which characterize the Λ
decay, α− and ∆, defined as

α− = 2< xy∗

|x|2 + |y|2
=

2|x||y|cos(∆)
|x|2 + |y|2

. (5.49)

Here, ∆ is the relative phase between the two terms in the decay amplitude. The values of α− and
∆ have been empirically determined as α− = 0.642± 0.013 [5] and ∆ = 7.7◦± 4.0◦ [76]. Using these
values, we set |x| = A = 1 and calculate B/A = 6.88ei∆, absorbing the Λ decay normalization into
an overall scale factor for each full production amplitude. Thus, we write the final decay amplitude
as

AΛ→pπ− = up(1− 6.88ei∆γ5)uΛ (5.50)

For least-squares fits to K+Λ production results, we do not include the Λ → pπ− amplitude in
the full amplitudes. In order to compare fit results from these fits and event-based fits in which the
full Λ decay is used, we have calculated the average magnitude of the decay amplitude to be

〈|AΛ→pπ− |〉 =
(
〈|AΛ→pπ− |2〉

)1/2
= 2.184 (5.51)

by averaging over raw Monte Carlo events.

5.6.3 Non-resonant Processes

We consider several non-resonant production mechanisms: t-channel K+, K∗(892), and K1(1270)
exchanges and u-channel Λ exchange. These choices are motivated by the work of Adelseck and
Saghai [79]. Diagrams characterizing these amplitudes are given in Figure 5.1. The amplitude for
each of these processes is then dressed with a monopole form factor for each of the two vertices to
model physical particle sizes.
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Figure 5.1: Shown above are diagrams characterizing the γp → K+Λ production mechanisms con-
sidered in this analysis. (Image produced by [77].)

t-channel K+ Exchange

The most basic possible t-channel process is exchange of a virtual pseudoscalar particle with strangeness
+1 (i.e. the K+ meson). The amplitude for this process is written quite simply as

AK(bare)
γp→K+Λ = i(gK+)u(pΛ,mΛ)γ5u(pi,mi)

1
t− w2

K+

qµε
µ, (5.52)

where gK+ is an overall scale factor for the K+ exchange process, q is the 4-momentum of the
external K+, and ε is the photon polarization vector. We then add a monopole form factor for each
vertex to get

AK
γp→K+Λ = Fm(t, wK ,ΛγKK)Fm(t, wK ,ΛKpΛ)AK(bare)

γp→K+Λ, (5.53)

where the F take the form

Fm(t, w,Λ) =
Λ2 − w2

Λ2 − t
, (5.54)

and the Λs are the cut-off mass for the interaction. Thus, the t-channel 0− exchange amplitude has
three fit parameters (gK+ , ΛγKK , and ΛKpΛ).

t-channel K∗ Exchange

There are two distinct Lorentz-invariant amplitudes that we can construct for the t-channel vector
meson (K∗) exchange. In what follows, we represent the momentum and spin of the exchange
particle as x = k − q and mx, and the K∗ mass is denoted by wK∗ = 891.66 MeV/c2. The first,
which we refer to as the K∗

E (electric coupling) amplitude, can be written as

AK∗
E(bare)

γp→K+Λ = (gK∗
E
)u(pΛ,mΛ)γµu(pi,mi)εµ(x,mx)

1
t− w2

K∗
εναβλε∗ν(x,mx)qαkβελ(k,mγ), (5.55)

where gK∗
E

is an overall scale factor for the process, εµ(x,mx) and εµ(k,mγ) are the polarization
vectors of the exchange particle and the incoming photon and εµναβ is the Levi-Civita tensor.
Because the K∗ is an intermediate particle, and is not directly observed, we must sum over its
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possible spins states mx. Thus, we use the projection operator P(1)
µν (p) for a spin-1 particle with

momentum p, written as [70]

P(1)
µν (p) =

∑
m

εµ(p,m)ε∗ν(p,m) = −gµν +
pµpν

p2
. (5.56)

Adding the sum to the amplitude leaves us with

AK∗
E(bare)

γp→K+Λ =
∑
mx

(gK∗
E
)u(pΛ,mΛ)γµu(pi,mi)εµ(x,mx)

1
t− w2

K∗
εναβλε∗ν(x,mx)qαkβελ(k,mγ)

= (gK∗
E
)u(pΛ,mΛ)γµu(pi,mi)

1
t− w2

K∗
εναβλqαkβελ(k,mγ)

(
−gµν +

xµxν

w2
K∗

)
= (gK∗

E
)u(pΛ,mΛ)γνu(pi,mi)

1
t− w2

K∗
εναβλqαkβελ(k,mγ), (5.57)

where the last step follows from εµναβpµpνqαkβ = 0 for the totally antisymmetric tensor εµναβ .
The other possible amplitude, the magnetic coupling, can be written as

AK∗
M (bare)

γp→K+Λ = i
∑
mx

(gK∗
E
)u(pΛ,mΛ)xµσ ν

µ u(pi,mi)εν(x,mx)
M

t− w2
K∗

εαβλδε∗α(x,mx)qβkλεδ(k,mγ)

= i(gK∗
E
)u(pΛ,mΛ)xµσ α

µ u(pi,mi)
M

t− w2
K∗

εαβλδqβkλεδ(k,mγ), (5.58)

where σ ν
µ ≡ i

2 [γµ, γ
ν ] is the Dirac σ matrix and gK∗

M
is the amplitude scale factor. As in the 0−

exchange, we apply monopole form factors at each vertex:

AK∗
E

γp→K+Λ = Fm(t, wK∗ ,ΛE
γKK∗)Fm(t, wK∗ ,ΛE

K∗pΛ)AK∗
E(bare)

γp→K+Λ (5.59)

AK∗
M

γp→K+Λ = Fm(t, wK∗ ,ΛM
γKK∗)Fm(t, wK∗ ,ΛM

K∗pΛ)AK∗
M (bare)

γp→K+Λ . (5.60)

Note that amplitudes given in (5.60) and (5.60) each contain three fit parameters.

t-channel K1(1270) Exchange

Finally, we consider exchange of the pseudovector (1+) K1(1270). This amplitude can be written as

AK1(bare)
γp→K+Λ =

∑
mx

(gK1)u(pΛ,mΛ)γµγ5u(pi,mi)εµ(x,mx)
1

t− w2
K1

ε∗ν(x,mx)εν(k,mγ)

= (gK1)u(pΛ,mΛ)γµγ5u(pi,mi)P(1) ν
µ (x,mx)

1
t− w2

K1

εν(k,mγ), (5.61)

where gK1 is the amplitude scale factor and wK1 = 1.272 GeV/c2. We apply monopole form factors
to get

AK1
γp→K+Λ = Fm(t, wK1 ,ΛγKK1)Fm(t, wK1 ,ΛK1pΛ)AK1(bare)

γp→K+Λ. (5.62)

Thus, AK1
γp→K+Λ also contains three fit parameters.

u-channel 1
2

+ Exchange

For γp → K+Λ, u-channel processes can proceed through the exchange of a JP = 1
2

+ particle. In
this analysis, we consider exchanges of both the ground-state Λ and the excited hyperon Λ(1800).
For the u-channel processes, the exchange momentum is given by x = pi − q, and mx is used to
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denote the spin of the exchanged baryon. The amplitudes for these processes differ only in the mass
dependence of the propagator, so we may write the amplitude for the u-channel process as

Au(bare)
γp→K+Λ =

∑
mx

(gu)u(pΛ,mΛ)γ5u(x,mx)
1

u− w2
x

u(x,mx)kµσµνε
ν(k,mγ)u(pi,mi)

= (gu)u(pΛ,mΛ)γ5P(x)
1

u− w2
x

kµσµνε
ν(k,mγ)u(pi,mi)

(5.63)

where gu is a scale factor, wx is the mass of the exchange particle, and P 1
2 (x) is the projection

operator for a spin- 1
2 particle with momentum x. We then apply a dipole form-factor to the amplitude

to get
Au

γp→K+Λ = Fd(u,wx,Λx)Au(bare)
γp→K+Λ, (5.64)

where

Fd(u,w,Λ) =
Λ4

Λ4 + (u− w2)2
, (5.65)

and Λ is the mass cut-off for the form factor.

s-channel Proton Exchange

We also consider the s-channel exchange of the (off-shell) proton. Following the work of [24], we
construct the amplitude for this diagram as

Asp

γp→K+Λ =
∑
mx

i(gKΛN )u(pΛ,mΛ)γ5u(x,mx)
1

s− w2
p

×u(x,mx)(eγαεα(k,mγ) + µpγ
βkβγ

ρερ(k,mγ)u(pi,mi) (5.66)

=
∑
mx

i(gKΛN )u(pΛ,mΛ)γ5 1
s− w2

p

×P(x)(eγαεα(k,mγ) + µpγ
βkβγ

ρερ(k,mγ)u(pi,mi), (5.67)

where x = k+pi is the exchanged momentum, and e and µp are the electric coupling factor and proton
magnetic moment. Note that this amplitude differs from that of s-channel resonant processes in that
its propagator is evaluated at the proton mass (wp = 938.272 MeV). Here, gKΛN is the coupling
factor associated with the final state vertex. The value of this factr has bee estimated, but these
estimates are typically the results of large-scale fits or ad hoc SU(3) relations to the πNN coupling.
These values range between 3.6 [24] and 11.5 [78]. We discuss this diagram and its effect on our
analysis further in §8.2.

5.6.4 Resonant Processes

The most important amplitudes for our analysis are the s-channel amplitudes which describe K+Λ
photoproduction through an excited nucleon (N∗) intermediate state characterized by spin and
parity JP . We use these amplitudes for our “Mother Fit” as well as for resonance searches in our
partial wave analysis. One of the interesting features of the γp → K+Λ reaction is its iso-spin
filtering; the ∆ resonances (I∆ = 3

2 ) do not couple to the K+Λ (IΛ = 1
2 , IK = 0) final state.

The full γp → N∗ → K+Λ can be treated in two halves: the production amplitude γp → N∗

(“ 1
2

+1− → JP ”), and the decay amplitude N∗ → K+Λ (“JP → 0− 1
2

+”). In what follows, we refer
to the momentum and spin of the intermediate N∗ as PN and MN , respectively. Here, we follow
the work of [4].
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The JP → K+Λ Amplitude

We first consider the JP → K+Λ amplitudes for which P = (−)J+ 1
2 . Below, we denote the Dirac

spinors of the Λ and JP states as u(pΛ) and u(PN ,MN ), respectively. Beginning with the JP = 1
2

−

state, we have
A 1

2
−→K+Λ ∼ u(pΛ,mΛ)u(PN ,MN ), (5.68)

as the decay can only proceed through an S-wave. For the JP
N∗ = 3

2

+, we must couple the initial and
final states by adding a unit of orbital angular momentum (P-wave). This amplitude is constructed
by adding the L = 1 orbital angular momentum tensor, L(1)

µ (pKΛ) to get:

A 3
2
+→K+Λ ∼ u(pΛ,mΛ)L(1)

µ (pKΛ)uµ(PN ,MN ), (5.69)

where pKΛ = 1
2 (pK − pΛ) is the relative momentum used to define L(1). This can be generalized to

give the decay amplitude

AJP→K+Λ ∼ u(pΛ,mΛ)L(`)
µ1µ2...µ`

(pKΛ)uµ1µ2...µ`(PN ,MN ), ` = 1, 2, 3, ... (5.70)

Next, we consider JP states with P = (−)J− 1
2 . The 1

2

+ → K+Λ decay can proceed only through
P-wave, with an amplitude written as

A 1
2
+→K+Λ ∼ u(pΛ,mΛ)L1

µ(pKΛ)γµγ5u(PN ,MN ), (5.71)

where the γ5 is included for parity conservation. This form is easily generalized to higher J :

AJP→K+Λ ∼ u(pΛ,mΛ)L`
µ1µ2...µ`

(pKΛ)γµ1γ5uµ2...µ`(PN ,MN ), ` = 1, 2, 3, ... (5.72)

The γp→ JP Amplitude

In our above treatment of decay amplitudes, we constructed amplitudes in definite states of L− S.
If we use the L− S basis for the production amplitudes, the amplitudes for different couplings to a
given JP differ only by a factor of the center-of-mass energy [4]. Because we group events according
to center-of-mass energy, the amplitudes for these couplings for any event would differ only by a
constant, rendering our fit insensitive to the differences in the amplitudes.

To avoid this problem, we write production amplitudes characterizing the γp → JP reaction in
the multipole basis. In this basis, we think of the photon spin as coupling to the orbital angular
momentum of the γp system to produce a state of pure spin and parity denoted by jp. This jp

is then coupled to the proton spin to produce the JP value of the N∗. Because both the photon
and proton have their momenta aligned with ẑ, we can conclude that `z = 0. Thus, mγ = ±1 and
m` = 0 combine to give mj = ±1 and j cannot be 0. We divide the amplitudes into two types:
electric coupling with p = (−)j and magnetic couplings with p = (−)j+1. We denote the states with
jp = 1−, 2+, ... by E1, E2, ... and those with jp = 1+, 2−, ... by M1,M2, ...

A table summarizing the quantum numbers of the different multipole states is provided in 5.1.

Couplings to JP States with P = (−)J+ 1
2 = { 1

2

−
, 3

2

+
, 5

2

−
, ...}

We first consider the JP = 1
2

− amplitude. In order that we conserve angular momentum and parity,
the photon and proton must be in an ` = 0 or ` = 2 state. Coupling the photon to the ` = 0 state
gives jp = 1−, whereas the ` = 2 state can give jp = 1−, 2−, 3−. As described above, we must then
couple the jp states to the proton spin to get JP . Only the jp = 1− states can couple to the proton
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JP Mulitpoles spγ `pγ spγ `pγ spγ `pγ

( 1
2 )− E1 1

2 0 3
2 2

( 3
2 )− E1,M2 1

2 2 3
2 0 3

2 2
( 5
2 )− M2,E3 1

2 2 3
2 2 3

2 4
( 7
2 )− E3,M4 1

2 4 3
2 2 3

2 4
( 9
2 )− M4,E5 1

2 4 3
2 4 3

2 6
( 1
2 )+ M1 1

2 1 3
2 1

( 3
2 )+ M1,E2 1

2 1 3
2 1 3

2 3
( 5
2 )+ E2,M3 1

2 3 3
2 1 3

2 3
( 7
2 )+ M3,E4 1

2 3 3
2 3 3

2 5
( 9
2 )+ E4,M5 1

2 5 3
2 3 3

2 5

Table 5.1: Quantum numbers describing multipole couplings for γp → JP . In the left column, JP

gives the total spin and parity of the system (and thus of N∗). In the right three columns, the `pγ ’s
give the orbital angular momenta between proton and γ. The spγ ’s give the spin of the pγ system
in the LS basis, solely for comparison. These quantum numbers are then coupled via either the
electric or magnetic multipoles to the JP .

( 1
2

+) to yield JP = 1
2

−. Hence, we say that the JP = 1
2

− state couples only to the E1 multipole
and we write the amplitude for this process as

AE1
γp→ 1

2
− ∼ u(PN ,MN )γµγ5u(pi,mi)

(
P(1)

µν (PN )εν(k,mγ)
)

∼ u(PN ,MN )γµγ5u(pi,mi)εµ(k,mγ). (5.73)

Next, we consider the JP = 3
2

+ state. Allowed ` values of the γp system for this reaction are
` = 1 and ` = 3. The photon can couple to ` = 1 to give jp = 1+, 2+, and to ` = 3 to give
jp = 2+, 3+, 4+. Of these, only the jp = 1+ (M1 multipole) and jp = 2+ (E2 multipole) states can
couple with the proton to give JP = 3

2

+. The discarded E2 amplitude from the ` = 3 coupling has
the same angular distribution as that of the ` = 1 coupling. Because the ` = 1 coupling represents
both multipoles, we may discard the ` = 3 coupling and write the amplitude compactly as

Amp=j+

γp→ 3
2
+ ∼ uµ(PN ,MN )γνγ5P(j)

µναβ(PN )L(1)α(ppγ)εβ(k,mγ)u(pi,mi), (5.74)

where ppγ = pi−k, and mp = j+ characterizes the multipole (j = 1 for magnetic, j = 2 for electric).
This amplitude can be generalized by extension of the projection operator and angular momentum
tensor to yield amplitudes for higher J states:

Amp=jp

γp→JP ∼ uµ1µ2...µ`(PN ,MN )γνγ5P(j)
µ1µ2...µ`να1α2...α`β(PN )L(`)α1α2...α`(ppγ)εβ(k,mγ)u(pi,mi),

(5.75)
where ` = J − 1

2 , j = J − 1
2 or j = J + 1

2 , and p = (−)J+ 1
2 . For each JP > 1

2

−, there are two
possible multipole couplings, one electric and one magnetic.

Couplings to JP States with P = (−)J− 1
2 = { 1

2

+
, 3

2

−
, 5

2

+
, ...}

Finally, we consider amplitudes for couplings to JP states with P = (−)J− 1
2 . We begin with

JP = 1
2

+. Here, ` = 1 is the only possibility for the angular momentum of the γp system. ` can
couple to the photon spin to give jp = 1+ or 2+, however, only the 1+ (M1 multipole) can couple
with the proton to give total JP = 1

2

+. We can write the amplitude for this process as

AM1
γp→ 1

2
+ ∼ u(PN ,MN )γαL(1)

α (ppγ)γµεµ(k,mγ)u(pi,mi). (5.76)
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The JP = 3
2

− state can be created with the γp system in either the ` = 0 or ` = 2 states. These
couple to the photon to give jp = 1− for ` = 0 and jp = 1−, 2−, 3− for ` = 2. Of these, only the
jp = 1− and jp = 2− states can contribute. We may write the amplitude for both of these processes
as

Amp=j−

γp→ 3
2
− ∼ uµ(PN ,MN )γνγαP(j)

µναµ′ν′α′(PN )L(2)µ′ν′(ppγ)εα
′
(k,mγ)u(pi,mi), (5.77)

where j = 1, 2.
This can be generalized to higher J states with P = (−)J− 1

2 as

Amp=jp

γp→JP ∼ uµ1µ2...µ`−1(PN ,MN )γµ`γµ`+1P(j)
µ1µ2...µ`+1ν1ν2...ν`+1

(PN )×

L(`)ν1ν2...ν`+1(ppγ)εν`+1(k,mγ)u(pi,mi), (5.78)

where ` = J + 1
2 , j = J − 1

2 or j = J + 1
2 , and p = (−)J− 1

2 . Once again, each JP > 1
2

+ has one
electric and one magnetic coupling to γp.

5.6.5 Constructing the γp → JP → K+Λ Amplitude

We can now combine amplitudes for γp → JP and JP → K+Λ to construct the amplitude for the
the full γp → JP → K+Λ reaction. We define the quantities XPROD and XDECAY from (5.70),
(5.72), (5.75), and (5.78) as

Aγp→JP ≡ uµ1µ2...µ
J− 1

2
(PN ,MN )X

νµ1µ2...µ
J− 1

2
PROD εν(k,mγ)u(pi,mi) (5.79)

AJP→K+Λ ≡ u(pΛ,mΛ)X
µ1µ2...µ

J− 1
2

DECAY uµ1µ2...µ
J− 1

2
(PN ,MN ). (5.80)

XPROD and XDECAY are thus the “meat” of the production and decay amplitudes. To create the
full amplitude, we simply combine Aγp→JP and AJP→K+Λ and sum over the possible spin states of
the intermediate JP state:

Aγp→JP→K+Λ =
∑
MN

u(pΛ,mΛ)X
µ1µ2...µ

J− 1
2

DECAY uµ1µ2...µ
J− 1

2
(PN ,MN )uν1ν2...ν

J− 1
2
(PN ,MN )×

X
νν1ν2...ν

J− 1
2

PROD εν(k,mγ)u(pi,mi)R(s)

Aγp→JP→K+Λ = u(pΛ,mΛ)X
µ1µ2...µ

J− 1
2

DECAY Pµ1µ2...µ
J− 1

2
ν1ν2...ν

J− 1
2
(PN )×

X
νν1ν2...ν

J− 1
2

PROD εν(k,mγ)u(pi,mi)R(s), (5.81)

where R(s) is included as the mass dependence of the JP state. Because we bin finely in
√
s, we

are able to treat R(s) as a bin-dependent (complex) constant and extract the s-dependence of the
JP state by performing independent fits in each bin.

5.7 Summary

In this chapter, we have developed the machinery of our fitting procedure. The methods and
formulæ used for both likelihood and least-squared fits are described. We provide a brief synopsis
of the covariant tensor formalism used for amplitude calculations. We motivate and construct the
amplitudes used for resonant s-channel and non-resonant t- and u-channel photoproduction of the
K+Λ system as well as the Λ → pπ− decay amplitude. These techniques are used both for extraction
of results (Chapter 6) and our partial wave analysis (Chapter 8).



Chapter 6

Differential Cross Section and
Recoil Polarization Measurements

.
In the previous chapters, we have described all of our methods for extracting γp→ K+Λ yields

from the g11a dataset. We have also outline our calculations of our detector acceptance and photon
normalization. In this chapter, we combine these three elements to extract the measureable quantites
characteristic of the reaction given an unpolarized beam and target: the differential cross section
and Λ recoil polarization. Results are given from both the two- and three-track final state analyses.
We note several features of the differential cross section and polarization results that are interesting
in light of the search for excited nucleon states. We conclude by comparing these results to previous
measurements.

Here, we remind the reader that we have fully developed two analyses of K+Λ production in the
g11a dataset: the K+pπ− and K+p(π−) topologies. In this chapter, we present measurements from
these independent analyses. The level of agreement displayed by the results of the two analyses lends
creedence to our treatment of CLAS acceptance, signal extraction, and systematics in the previous
chapters.

6.1 The Mother of All Fits

In Chapter 4, we described our method of acceptance calculation using GSIM and phase-space
γp → K+Λ → K+pπ− Monte Carlo events. As described, this method is incomplete because the
phase-space distribution of Monte Carlo events does not necessarily match the data distribution
created by more complicated production processes. Past analyses ([13]) have investigated the effect
of a more “physical” Monte Carlo on acceptance calculations by producing Monte Carlo events
according to a forward-peaked cos θCM distribution (thus modeling t-channel production) [80].

We ensure the best possible match of our Monte Carlo and data by performing an “complete”
expansion of the data in each

√
s bin. For this fit, we use the maximum-likelihood method (see §5.2)

to fit the set of s-channel γp→ JP → K+Λ → K+pπ− amplitudes with 1
2

± ≤ JP ≤ 11
2

± to the data.
Herein, we refer to this fit as the “Mother of All Fits.” We do not interpret the results of the Mother
Fit as physics results; rather we only exploit the fit as a nearly complete expansion of the data in a
set of basis functions. For the level of complexity of the K+Λ channel, the amplitudes used in the
Mother Fit constitute a basis complete enough to describe the data in all physical distributions and
correlations.

79
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6.1.1 Amplitude Parametrization

As described in §5.6.4, the s-channel amplitudes with JP = 1
2

± have only a magnetic or electric
multipole coupling and are each parametrized by two (real) fit parameters. For the purposes of our
fit, these amplitudes can be written as

Aγp→ 1
2
+→K+Λ→K+pπ− = r 1

2
+e

iφ 1
2
+AΛ→pπ−

mΛ,mf
AE1,mi,mγ ,mΛ (6.1)

Aγp→ 1
2
−→K+Λ→K+pπ− = r 1

2
−e

iφ 1
2
−AΛ→pπ−

mΛ,mf
AM1,mi,mγ ,mΛ , (6.2)

where r 1
2
± and φ 1

2
± represent overall scale and phase parameters, respectively, and AΛ→pπ−

mΛ,mf
and

AMP,mi,mγ ,mΛ are the amplitudes for Λ decay and production for the specified spin polarizations.
As such, the JP = 1

2

± amplitudes contribute a total of four parameters to the Mother Fit.
Amplitudes for J ≥ 3

2 are complicated by the fact that for each JP , both electric and magnetic
couplings contribute. We are able to remove the ambiguity in the production and decay couplings
for a given JP amplitude by writing the full amplitude as

Aγp→JP→K+Λ→K+pπ− = fMP (θJP )rJP eiφJP AΛ→pπ−

mΛ,mf
AMP,mi,mγ ,mΛ , (6.3)

where MP denotes the specific multipole coupling. θJP is a fit parameter included to allow the fit
to manipulate the ratio of the two multipoles through the function f defined as

fMP (θJP ) =
{

cos θJP for electric multipoles
sin θJP for magnetic multipoles

}
. (6.4)

This parametrization requires the JP → K+Λ decay coupling for a given JP be the same for both
multipole productions while providing freedom in the relative strengths of the multipoles. Through
the use of these trigonometric functions, we ensure that

∑
MP

f2
MP = 1. Thus, from each JP partial

wave with J ≥ 3
2 , we have three fit parameters. Taking into account all of the partial waves used,

we see that our Mother Fit contains a total of thirty-four independent fit parameters.

6.1.2 Fit Accuracy

The outcome of the Mother Fit is a weight for each accepted and raw Monte Carlo event given by
the final fit parameters and amplitudes. We are able to check how well the fit matches the accepted
Monte Carlo to the data by comparing data and weighted accepted Monte Carlo distributions in each√
s bin. For our reaction, for a fixed center-of-mass energy there are three physical parameters which

characterize the reaction: the production angle (cos θCM ) defined by the K+ trajectory and the z-
axis (photon momentum direction) and the proton polar and azimuthal angles in the Λ-helicity-frame
(θp

ΛHF and ϕp
ΛHF ).

Figure 6.1 shows the effect of the fit weighting on the production angle distributions for two
√
s

bins for both the two- and three-track topologies. Shown are the cos θK
CM distributions of the data

and accepted Monte Carlo before and after weighting by fit results. We see that the agreement
in this distribution between the weighted accepted Monte Carlo and the data is excellent, a good
preliminary indicator that our Mother Fit is working. It is also interesting to note that in the lower
center-of-mass energy bins, the effects of the the fit weighting are less drastic; the difference between
the phase-space Monte Carlo and the data is slight. However, for higher energy bins where the K+Λ
production is dominated by t-channel exchange, the fit weighting is dramatic.

We must also ensure that correlations between the characteristic kinematic variables are properly
matched. Figure 6.2 shows the effects of fit weighting on the ϕp

ΛHF v. cos θp
ΛHF distributions in bins

of cos θK
CM for both the two- and three-track topologies. Physics and detector acceptance combine to

make the two-dimensional data distributions far from flat. We find that the weighted Monte Carlo
distributions match those of the data in all kinematic correlations and deem the fits effective.
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Figure 6.1: Shown above are cos θK
CM yields for the data (black) and Monte Carlo before (blue) and

after (red) fit weighting. The top plots show the distributions for the three-track topology in the (a)√
s = 1.905 GeV and (b)

√
s = 2.305 GeV bins. The bottom plots represent the two-track topology

distributions for the (c)
√
s = 2.105 GeV and (d)

√
s = 2.705 GeV bins. Overall agreement between

data and weighted accepted MC is very good.
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Figure 6.2: Shown above are plots of φp
ΛHF v. cos θp

ΛHF for data and weighted accepted Monte
Carlo in bins of cos θK

CM . Figures (a) and (b) show the data and Monte Carlo events (respectively)
in the range 2.000 GeV ≤

√
s < 2.050 GeV from the tree-track final state topology. Figures (c)

and (d) show the data and Monte Carlo events in the range 2.500 GeV ≤
√
s < 2.550 GeV from

the two-track final state topology. In each figure, each of the nine plots represents a 0.2-unit-wide
bin in cos θK

CM , from backward angles at top left to forward angle at bottom right. The axes in all
plots show the same ranges (−π ≤ φ ≤ π, −1.0 ≤ cos θ ≤ 1.0). All correlations present in the data
are represented in the weighted Monte Carlo.
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Factor Value Description Source
At 1.00794 g/mol target atomic weight
ρt 0.7177±0.0008 g/cm3 target density [4]
`t 40±0.05 cm target length [45]
NA 6.022141×1023 mol−1 Avogadro’s constant [5]

Table 6.1: Table of g11a Target Factors

6.2 Differential Cross Sections

For scattering processes, the differential cross section, dσ is a measurable quantity which describes
the likelihood of an interaction for a given set kinematics. For a photoproduction experiment such
as K+Λ production in g11a, dσ is a measure of the probability per unit incident flux that the K+Λ
final state will be produced per unit solid angle. The differential cross section is a quantity that is
inherent to the initial state particles. For this analysis, a measurement of the γp→ K+Λ differential
cross section is of great interest, as discrepancies exist among world data for the reaction. In this
section, we present differential cross section results from our analyses of both two- and three-track
final state topologies.

6.2.1 Calculation

In what follows, we quote differential cross section measurements as a function of cos θK
CM . As such,

we calculate dσ/d cos θK
CM for a given kinematic range as

dσ

d cos θK
CM

=
(

At

F(
√
s)ρt`tNA

)
Y(
√
s, θK

CM )
(∆ cos θK

CM )η(
√
s, θK

CM )
, (6.5)

whereAt, ρt, and `t are the target atomic weight, density, and length (respectively), NA is Avogadro’s
constant, F(

√
s) is the corrected number of photons impingent on the target in each

√
s bin, and

∆ cos θK
CM = 0.10 is the width of our binning in cos θK

CM and is the same for all kinematic regions.
A summary of the values of target factors used in this analysis are given in Table 6.1. For the three-
track analysis, Y(

√
s, cos θK

CM ) is the detected data yield in each (
√
s, cos θK

CM ). For the two-track
analysis, we consider the weighting of each event from our background subtraction by calculating
the data yield to be

Y(
√
s, cos θK

CM ) =
N∑
i

Qi, (6.6)

where N is the number of data events in the (
√
s, cosθK

CM ) bin and Qi is the signal probability of
event i (see §3.8). We calculate the acceptance in a given bin as

η(
√
s, cosθK

CM ) =

Nacc∑
i

|Mi|2

Nraw∑
j

|Mj |2
(6.7)

where Nacc and Nraw are the numbers of accepted and raw Monte Carlo events, and |Mi|2 is the
event physics weights calculated with from the results of the Mother Fit.
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Source Value Description
Particle Identification 0.11% signal loss to PID, three-track analysis (§3.5.1)

0.45% signal loss to PID, two-track analysis (§3.5.1)
3.4% two-track MC for

√
s < 1.66 GeV (§4.2)

Confidence Level Cuts 3% data/MC loss due to CL cut [81]
Acceptance 3-6% Acceptance study (§4.3)

Λ → pπ− branching fraction 0.5% exp. uncertainty in BF [5]
Target Density 0.11% Std. dev. of target measurement per run [4]
Target Length 0.125% target survey precision [45]

Photon Normalization 7.3% based upon run-to-run normalized yields [81]
Photon Transmission Efficiency 0.5% propagation of photons to target [81]

Live-time 3% DAQ live time [4]

Table 6.2: Table of Systematic Errors

6.2.2 Errors

Statistical errors in each (
√
s, cos θK

CM ) are given by

σ2
Y =


Y for three-track analysis

Y + (
N∑
i

σQi
)2 for two-track analysis

 . (6.8a)

σ2
acc = Nacc (6.8b)

σ2
raw = Nraw. (6.8c)

Table 6.2 gives a summary of the values of systematic errors that apply to this analysis. The sys-
tematic uncertainty of our acceptance calculation has been discussed earlier in this text, as noted.
Values for the normalization errors can be found in [81]. Exact numerical values for the overall
systematic error for each dσ point are given with the results in Appendix A. Overall normalization
uncertainty combines photon normalization, photon transmission efficiency, and live-time uncertain-
ties for a total of 7.9%. All of the uncertainties in the Table 6.2 combine for a total systematic
uncertainty of ≈ 10.4% (dependent upon analysis topology).

6.2.3 Results

We have calculated differential cross section measurements for the γp → K+Λ reaction from the
two- and three-track analyses independently. Figures 6.3 through 6.9 show the final dσ/d cos θK

CM

results in each
√
s bin (10 MeV wide). The numerical values of the results can be found in Appendix

A. We present no differential cross section measurements for the
√
s = 1.955 GeV, 2.735 GeV, and

2.745 GeV bins for reasons discussed in §4.5. Error bars on the points in these figures represent
statistical errors as described in eq (6.8a). In all, we present measurements at 2076 kinematic points.

Several features of the differential cross section are worth noting. At low
√
s values (

√
s < 1.89 GeV),

the cross section is relatively linear in cos θK
CM . Above

√
s = 1.89 GeV, a backwards peak is present

in dσ, and by
√
s ≈ 2.39, we observe the backward and forward peaks to be separated. At all

energies above
√
s ≈ 1.94 GeV, the forward peak in the differential cross section is recognizable. For

energies above
√
s ≈ 2.4 GeV, the forward peak dominates the differential cross section, suggesting

the dominance of t-channel production mechanisms. In the energy range 2.0 GeV ≤
√
s < 2.7 GeV,

we observe many interesting, localized features in the differential cross section, indicative of higher-J
resonant production mechanisms.
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These plots also illustrate how much larger the acceptance is for the two-track topology. Though
the three-track analysis is perhaps simpler due to its very low background levels, the two-track
analysis is essential for understanding K+Λ production near threshold and at backward angles.

Global differences between results from the different topologies are minimal. To illustrate this,
we calculate the weighted difference between the two results in a given (

√
s, cos θK

CM ) bin as

∆(
√
s, cos θK

CM ) =
x2 − x3√

σ2
2 + σ2

3 + (xση(
√
s))2

, (6.9)

where xi and σi are the dσ result and its error in the given kinematic bin from the i-track analysis, x
is the average of the two results from the given kinematic, and ση(

√
s) is the

√
s-dependent (relative)

acceptance uncertainty calculated in §4.3. The ∆ distribution for all results is given in Figure 6.11.
Fitting a gaussian to the ∆ distribution for all bins which have a result from both topologies shows it
to be normally distributed with mean −0.212 and width of 0.982. The −0.212 offset mean indicates
that the three-track results are larger than the two-track results, though by only 0.212 standard
deviations. The roughly unit width shows that the statistical and acceptance errors account for the
variation of the two results.

The consistency of the two results allows us to create an average measurement of the two weighted
according to their statistical errors. For each (

√
s, cos θK

CM ) bin in which both a two- and three-
track measurement has been made, we calculate the weighted mean value of the cross section and
error as

x(
√
s, cos θK

CM ) =

∑
i

xi/σ
2
i∑

j

1/σ2
j

(6.10a)

σ2(
√
s, cos θK

CM ) =

(∑
i

1/σ2
i

)−2(
1
σ2

2

+
1
σ2

3

+
2ρ
σ2σ3

)
, (6.10b)

where xi (i = 2, 3) is the result from the i-track analysis with statistical error σi. In the error
calculation, ρ is the correlation factor of the two results. Because our two-track dataset represents
≈28% of the full g11a dataset, we assume that it contains 28% of the events in the three-track
dataset and consequently set ρ = 0.28. Note that though 28% of the three-track events are also
present in the two-track dataset, these events comprise only ≈ 16.8% of the two-track dataset.
Thus, our estimate of ρ = 0.28 is a comfortable overestimate of the measurements’ correlation. For
(
√
s, cos θK

CM ) bins in which only one measurement has been made, we simply use that result as the
average value. We account for the offset in the two results (shown in Figure 6.11) by scaling errors
for these points by 1.212. Figures 6.21-6.23 show the weighted average differential cross sections as
a function of

√
s in each of nineteen 0.10-unit-wide cos θK

CM bins.

6.3 Λ Recoil Polarization

The weak Λ → pπ− decay is a well-understood phenomenon. Because of this, we are able to use
the explicit form of the Λ → pπ− amplitude in our amplitude generation (see §5.6.2). Interference
between the Λ s- and p-wave decay transitions causes an asymmetry in the proton momentum
distribution in the Λ rest frame [82]. This asymmetry allows access to the spin polarization of the
Λ via observation of the final state proton distribution. From the g11a dataset, we measure the
quantity PΛ, the polarization of the Λ in the direction normal to the production plane.
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Figure 6.3: dσ/d cos θK
CM (µb) v. cos θK

CM : Differential cross section results for the energy range
1.62 GeV ≤

√
s < 1.78 GeV. Results from the three-track analysis are shown in blue (triangles),

those of the two-track analysis in red (circles). All plots have the same cos θK
CM -axis range and

vertical axis ranges are the same for the four plots in each row.
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Figure 6.4: dσ/d cos θK
CM (µb) v. cos θK

CM : Differential cross section results for the energy range
1.78 GeV ≤

√
s < 1.94 GeV. Results from the three-track analysis are shown in blue (triangles),

those of the two-track analysis in red (circles). All plots have the same cos θK
CM -axis range and

vertical axis ranges are the same for the four plots in each row.
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Figure 6.5: dσ/d cos θK
CM (µb) v. cos θK

CM : Differential cross section results for the energy range
1.94 GeV ≤

√
s < 2.11 GeV. Results from the three-track analysis are shown in blue (triangles),

those of the two-track analysis in red (circles). All plots have the same cos θK
CM -axis range and

vertical axis ranges are the same for the four plots in each row.
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Figure 6.6: dσ/d cos θK
CM (µb) v. cos θK

CM : Differential cross section results for the energy range
2.11 GeV ≤

√
s < 2.27 GeV. Results from the three-track analysis are shown in blue (triangles),

those of the two-track analysis in red (circles). All plots have the same cos θK
CM -axis range and

vertical axis ranges are the same for the four plots in each row. Vertical axes are logarithmic scale.
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Figure 6.7: dσ/d cos θK
CM (µb) v. cos θK

CM : Differential cross section results for the energy range
2.27 GeV ≤

√
s < 2.43 GeV. Results from the three-track analysis are shown in blue (triangles),

those of the two-track analysis in red (circles). All plots have the same cos θK
CM -axis range and

vertical axis ranges are the same for the four plots in each row. Vertical axes are logarithmic scale.
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Figure 6.8: dσ/d cos θK
CM (µb) v. cos θK

CM : Differential cross section results for the energy range
2.43 GeV ≤

√
s < 2.59 GeV. Results from the three-track analysis are shown in blue (triangles),

those of the two-track analysis in red (circles). All plots have the same cos θK
CM -axis range and

vertical axis ranges are the same for the four plots in each row. Vertical axes are logarithmic scale.
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Figure 6.9: dσ/d cos θK
CM (µb) v. cos θK

CM : Differential cross section results for the energy range
2.59 GeV ≤

√
s < 2.77 GeV. Results from the three-track analysis are shown in blue (triangles),

those of the two-track analysis in red (circles). All plots have the same cos θK
CM -axis range and

vertical axis ranges are the same for the four plots in each row. Vertical axes are logarithmic scale.
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Figure 6.10: dσ/d cos θK
CM (µb) v. cos θK

CM : Differential cross section results for the energy range
2.77 GeV ≤

√
s < 2.84 GeV. Results from the three-track analysis are shown in blue (triangles),

those of the two-track analysis in red (circles). All plots have the same cos θK
CM -axis range and

vertical axis ranges are the same for the four plots in each row. Vertical axes are logarithmic scale.
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Figure 6.11: Histogram of the weighted difference between two- and three-track dσ/d cos θK
CM results.

This quantity is described in the text.
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6.3.1 Calculation

Because we have chosen the z-axis as our direction of angular momentum quantization, we are
able to easily calculate the recoil polarization, PΛ generated by a given set of amplitudes and fit
parameters. Recall that the mother fit provides an expansion of the data in all physically relevant
distributions, including distributions of the final state proton. Each s-channel amplitude used in the
Mother Fit produces a specific Λ polarization for a given kinematic region. Fitting with a complete
basis of s-channel amplitudes which explicitly include the Λ decay gives access to the Λ polarization.

From the resulting Mother Fit parameters, we project the observed recoil polarization at all
values of (

√
s, cos θK

CM ) where we have made differential cross section measurements (i.e. kinematic
regions where we have data). We generate s-channel γp → K+Λ amplitudes with 1

2

± ≤ JP ≤ 11
2

±

for each of these kinematics, keeping the Λ-polarization dependence. We write the total amplitudes
describing the process (including fit parameters from the Mother Fit) as Amγ ,mi,M

γp→K+Λ, where M denotes
the spin of the Λ along the z-axis. For calculation, we construct a two-component wave-function for
the process as

ψM (
√
s, cos θK

CM ) =
(
Amγ ,mi,M=+(

√
s, cos θK

CM )
Amγ ,mi,M=−(

√
s, cos θK

CM )

)
, (6.11)

where M = ± indicates Λ spin aligned or anti-aligned with ẑ. Because we have written our ampli-
tudes in the Sz-basis, we can use the Pauli spin matrices to project out PΛ which is the polarization
along ŷ:

PΛ =
1
N

∑
mγ ,mi

ψ†σyψ

=
i

N

∑
mγ ,mi

(
Amγ ,mi,+A∗mγ ,mi,− −Amγ ,mi,−A∗mγ ,mi,+

)
, (6.12)

where
N =

∑
mγ ,mi

∑
M

|Amγ ,mi,M (
√
s, cos θK

CM )|2 (6.13)

is a normalization factor.

6.3.2 Error Estimation

Though this extraction method is very powerful and quick in the presence of the Mother Fit, it lends
no a priori method of assigning statistical errors to the PΛ values. To estimate statistical errors, we
consider the differences in PΛ for adjacent

√
s values and fixed cos θK

CM . We begin by assigning to
each PΛ(

√
s, cos θK

CM ) point the “statistical” error [4]

σ2
s(
√
s, cos θK

CM ) =
1
2

1∑
i=−1

(
PΛ(

√
s+ i · 10MeV, cos θK

CM )− PΛ(
√
s, cos θK

CM )
)2
, (6.14)

where PΛ is the mean of the three points considered. To establish consistency between error bars in
a given

√
s-bin, we then applied a smoothing procedure; we assign the statistical error for a given

PΛ point to be the average of the statistical errors of it and its neighboring points in cos θK
CM .

To estimate the systematic error on PΛ measurements, we need to consider the effect of our
measured acceptance uncertainty. We begin by considering a theoretical cos θp

λHF distribution shown
in Figure 6.12(a) (note that the distribution is normalized). Recall that this distribution is related
to PΛ with form 1 + PΛα− cos θp

ΛHF . Thus, PΛ is extracted by fitting a linear function to this
distribution. To investigate ση’s effect on the extraction of this slope, we have used the toy model
described below and several values of ση. Here, we provide as an example the case where ση = 2.5%.
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Figure 6.12: Plots showing steps in our estimation of acceptance uncertainty effect on PΛ. Figure
(a) shows an ideal cos θ distribution with slope PΛ = 0.4. Figure (b) shows the same distribution
distorted by an uncertainty of 2.5%. Figure (c) shows the |PΛ−P ′Λ| distribution as described in the
text. Figure (d) shows the maximum difference in recoil polarizations, ∆PΛ, v. distribution skew
factor (see text).
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To simulate the effect of a 2.5% acceptance uncertainty, we skew the cos θp
ΛHF distribution by a

factor of 1.025 for values of cos θ > 0.0 and by 0.975 for cos θ ≤ 0.0. We then fit this skewed histogram
to obtain a new slope and recoil polarization, which we call P ′Λ. We repeat this process for all values
of the initial slope between 0.0 and 1.0 at 0.01 intervals. Plotting the |PΛ −P ′Λ| distributions shows
that for all values of PΛ, our acceptance uncertainty causes a difference uncertainty less than 0.0585.

We repeat this process for the values of ση indicated in Figure 6.12(d). The manner in which
we skew the cos θp

ΛHF for a given ση represents a wort case scenario; the effect of our acceptance
uncertainty is most likely much less drastic. As such, the effect ∆PΛ ≈ 11.7 given by the 5%
acceptance uncertainty is a gross over-estimate. We use as the systematic uncertainty associated
with our PΛ measurements half of this value, ∆PΛ = 0.0585.

6.3.3 Results

Figures 6.13-6.20 show the PΛ results from our two- and three-track analyses of g11a in 10-MeV-
wide

√
s bins versus cos θK

CM . Note that though normalization issues prevented us from making a
differential cross section measurement in the

√
s = 1.955 GeV, 2.735 GeV, and 2.745 GeV bins, we

are able to measure PΛ in these bins as the quantity is independent of normalization. Our extraction
method permits us to project a recoil polarization measurement at every (

√
s, cos θK

CM ) value for
which we have a dσ point. However, sparsely populated (

√
s, cos θK

CM ) bins present inconsistent
results as the Mother Fit does not have enough information. We present results at kinematics for
which extraction yielded consistent results in comparison with neighboring bins. Only statistical
errors are displayed on the points. In all, we present PΛ measurements at 1708 kinematic points.

Interesting structures in PΛ over the range 1.7 GeV ≤
√
s ≤ 2.6 GeV suggest the presence of

interfering s-channel resonances. Further comment on these is left to our partial wave analysis
(Chapter 8). Here, we only note that as the forward peak in the differential cross section becomes
more dominant (with increasing

√
s, we see that the recoil polarization in the forward direction

tends to -1, indicating a large amount of polarization out of the scattering plane.
As with the dσ/d cos θ measurements, agreement between the two results is very good. We thus

calculate an average value of the recoil polarization in the manner given by eq. (6.10). We display
the averaged values of all of our measurements versus

√
s in bins of cos θK

CM in Figures 6.21-6.23.

6.4 Comparison to Previous Measurements

Though g11a represents the most precise dataset for study of the γp → K+Λ reaction to date,
comparison to earlier results is a necessary step in the validation of our results. Several experiments
have produced differential cross sections in the energy range 1.62 GeV ≤

√
s < 2.5 GeV. At the

time of this analysis, two of the more recent measurements, those of Glander (SAPHIR, 2004)
and Bradford (CLAS, 2005) showed a large amount of discrepancy. In this section, we provide
comparisons to both of these results and show that agreement with the previous CLAS result is very
good. We also provide differential cross section comparisons to results at very backward and forward
angles made by the LEPS Collaboration (Hicks, 2007 and Sumihama 2006, respectively). Recoil
polarization measurements have also been made in the energy range 1.62 GeV ≤

√
s < 2.35 GeV

by the collaborations at CLAS, SAPHIR, and GRAAL. We demonstrate excellent agreement with
these results while showing a great increase in range and precision.

6.4.1 Differential Cross Sections

CLAS 2005 and SAPHIR 2004

The CLAS Collaboration published differential cross sections for the γp→ K+Λ reaction from anal-
yses of the g1c dataset in April of 2004 (J. McNabb, et al. [22]) and March of 2006 (R. Bradford, et al
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Figure 6.13: PΛ v. cos θK
CM : Λ recoil polarization results v. cos θK+

CM for the energy range 1.62 GeV
≤
√
s < 1.78 GeV. Results from the three-track analysis are shown in blue (triangles), those of the

two-track analysis in red (circles).
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Figure 6.14: PΛ v. cos θK
CM : Λ recoil polarization results v. cos θK+

CM for the energy range 1.78 GeV
≤
√
s < 1.94 GeV. Results from the three-track analysis are shown in blue (triangles), those of the

two-track analysis in red (circles). Errors displayed are statistical.
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Figure 6.15: PΛ v. cos θK
CM : Λ recoil polarization results v. cos θK+

CM for the energy range 1.94 GeV
≤
√
s < 2.10 GeV. Results from the three-track analysis are shown in blue (triangles), those of the

two-track analysis in red (circles). Errors displayed are statistical.
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Figure 6.16: PΛ v. cos θK
CM : Λ recoil polarization results v. cos θK+

CM for the energy range 2.10 GeV
≤
√
s < 2.26 GeV. Results from the three-track analysis are shown in blue (triangles), those of the

two-track analysis in red (circles). Errors displayed are statistical.
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Figure 6.17: PΛ v. cos θK
CM : Λ recoil polarization results v. cos θK+

CM for the energy range 2.26 GeV
≤
√
s < 2.42 GeV. Results from the three-track analysis are shown in blue (triangles), those of the

two-track analysis in red (circles). Errors displayed are statistical.



CHAPTER 6. DIFFERENTIAL CROSS SECTION AND Λ POLARIZATION 102

P
Λ

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
 = 2.425 GeVs

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
 = 2.465 GeVs

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
 = 2.505 GeVs

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
 = 2.545 GeVs

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
 = 2.435 GeVs

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
 = 2.475 GeVs

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
 = 2.515 GeVs

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
 = 2.555 GeVs

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
 = 2.445 GeVs

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
 = 2.485 GeVs

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
 = 2.525 GeVs

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
 = 2.565 GeVs

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
 = 2.455 GeVs

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
 = 2.495 GeVs

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
 = 2.535 GeVs

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
 = 2.575 GeVs

cosθKCM

Figure 6.18: PΛ v. cos θK
CM : Λ recoil polarization results v. cos θK+

CM for the energy range 2.42 GeV
≤
√
s < 2.58 GeV. Results from the three-track analysis are shown in blue (triangles), those of the

two-track analysis in red (circles). Errors displayed are statistical.
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Figure 6.19: PΛ v. cos θK
CM : Λ recoil polarization results v. cos θK+

CM for the energy range 2.58 GeV
≤
√
s < 2.74 GeV. Results from the three-track analysis are shown in blue (triangles), those of the

two-track analysis in red (circles). Errors displayed are statistical.
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Figure 6.20: PΛ v. cos θK
CM : Λ recoil polarization results v. cos θK+

CM for the energy range 2.74 GeV
≤
√
s < 2.84 GeV. Results from the three-track analysis are shown in blue (triangles), those of the

two-track analysis in red (circles). Errors displayed are statistical.
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Figure 6.21: Weighted mean dσ/d cos θK
CM and PΛ results v.

√
s for backward production angles.

Differential cross sections are plotted above recoil polarizations from the indicated cos θK
CM bin.

Errors displayed are statistical.



CHAPTER 6. DIFFERENTIAL CROSS SECTION AND Λ POLARIZATION 106

1.6 1.8 2 2.2 2.4 2.6 2.8

b)µ
 (θ

/d
co

s
σ

d

-210

-110

1  < -0.15K
CMθ cos≤-0.25 

 (GeV)s
1.6 1.8 2 2.2 2.4 2.6 2.8

Λ
P

-1

-0.5

0

0.5

1
1.6 1.8 2 2.2 2.4 2.6 2.8

b)µ
 (θ

/d
co

s
σ

d

-210

-110

1  < -0.05K
CMθ cos≤-0.15 

 (GeV)s
1.6 1.8 2 2.2 2.4 2.6 2.8

Λ
P

-1

-0.5

0

0.5

1

1.6 1.8 2 2.2 2.4 2.6 2.8

b)µ
 (θ

/d
co

s
σ

d -210

-110

1  < 0.05K
CMθ cos≤-0.05 

 (GeV)s
1.6 1.8 2 2.2 2.4 2.6 2.8

Λ
P

-1

-0.5

0

0.5

1
1.6 1.8 2 2.2 2.4 2.6 2.8

b)µ
 (θ

/d
co

s
σ

d -210

-110

1  < 0.15K
CMθ cos≤0.05 

 (GeV)s
1.6 1.8 2 2.2 2.4 2.6 2.8

Λ
P

-1

-0.5

0

0.5

1

1.6 1.8 2 2.2 2.4 2.6 2.8

b)µ
 (θ

/d
co

s
σ

d -210

-110

1  < 0.25K
CMθ cos≤0.15 

 (GeV)s
1.6 1.8 2 2.2 2.4 2.6 2.8

Λ
P

-1

-0.5

0

0.5

1
1.6 1.8 2 2.2 2.4 2.6 2.8

b)µ
 (θ

/d
co

s
σ

d -210

-110

1  < 0.35K
CMθ cos≤0.25 

 (GeV)s
1.6 1.8 2 2.2 2.4 2.6 2.8

Λ
P

-1

-0.5

0

0.5

1

Figure 6.22: Weighted mean dσ/d cos θK
CM and PΛ results v.

√
s for middle production angles.

Differential cross sections are plotted above recoil polarizations from the indicated cos θK
CM bin.

Errors displayed are statistical.
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Figure 6.23: Weighted mean dσ/d cos θK
CM and PΛ results v.

√
s for forward production angles.

Differential cross sections are plotted above recoil polarizations from the indicated cos θK
CM bin.

Errors displayed are statistical.
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[11]). Together, these results cover the energy range 1.62 GeV ≤
√
s < 2.54 GeV. At the time of its

publication, the CLAS g1c results reflected the world’s largest, most precise K+Λ photoproduction
dataset. However, differential cross sections published by the SAPHIR Collaboration in 2004 (Glan-
der, et al. [10]) showed markedly different values for the γp→ K+Λ cross sections; SAPHIR results
are up to 50% lower in some kinematic regions. Though the CLAS g1c measurement represented
a much larger dataset (roughly 6× 105 K+Λ events vs. SAPHIR’s 5.2× 105), the discrepancy was
troubling.

Figures 6.24 and 6.25 show comparisons of the CLAS g1c and SAPHIR results with our g11a
differential cross sections versus

√
s in bins of production angle. Note that energy binning for the

earlier CLAS analysis is slightly wider than for our analysis; the g1c analyses used 25-MeV-wide bins
in Eγ . We have, however, maintained the same cos θK

CM binning as the g1c analyses. Binning for
the SAPHIR analyses is much wider, reflecting the smaller statistics of the experiment. SAPHIR’s
production angle binning has the same width as ours, however bin edges are offset by 0.05. The
reader will also note that these figures represent only the energy range where the earlier analyses
produced results. Comparison of these three results is very encouraging. The CLAS g11a and g1c
measurements show excellent agreement at almost all kinematics. The SAPHIR results agree with
the CLAS results only at threshold and at backward angles.

Several features of the CLAS cross sections are worthy of note. The sizable hump in the dif-
ferential cross section at backward angles and

√
s ≈ 1.9 GeV is evident in both measurements. A

second hump feature in the differential cross section is observable at backward angles (most clearly
in −0.25 ≤ cos θK

CM < −0.15) at
√
s ≈ 2.15 GeV. Such features exist in the differential cross section

at forward angles, however they are much less pronounced due to the more dominant t-channel
production.

Localized discrepancies between the CLAS g11a and g1c results exist. For cos θK
CM , the g11a

differential cross section results display a larger
√
s-dependence than the g1c results. In this region,

the g1c results are relatively flat in
√
s. Our extremely cleanK+Λ signal peak in this region combined

with our powerful background subtraction method make it hard to believe that background events
are contributing to the higher g11a dσ at

√
s < 2.0 GeV. The flatness of the g1c differential cross

section in this most forward bin for
√
s > 2.3 GeV is also suspicious when considering prominence

of t-channel production in this region. A possible explanantion for this discrepancy is that in the
previous CLAS analyses, Monte Carlo was not weighted to simulate the effects of physics. As we
have shown in Figure 6.1, the difference between phase-space MC and our weighted MC is striking,
especially at forward angles. Due to the efficiency of our skim and particle identification cuts and
the agreement between the two- and three-track g11a analyses, we are confident in our results in
this region.

Differences in the two CLAS measurements also exist for
√
s < 1.85 GeV at forward angles. The

rise from threshold is much more dramatic in the g11a results than in those of g1c. The discrepancy
could possibly be explained by the overwhelming background in this region. Because statistics in
these kinematic bins are much lower relative to other regions, dσ results are much more sensitive to
background. Once again, we are confident of our kinematic fit and background subtraction method
in these regions.

Finally, Figure 6.26 shows the integrated differential cross section from the CLAS g11a and g1c
and SAPHIR Glander measurements in the range −0.45 ≤ cos θCM < 0.45. Agreement between the
two CLAS measurements is very good, while the SAPHIR data are roughly 20% lower.

LEPS 2006 and 2007

Differential cross section measurements of γp→ K+Λ were published by the LEPS collaboration in
2006 (Sumihama, et al. [14]) and 2007 (Hicks, et al. [15]). Though these measurements occupy a
much smaller region of the reaction’s phase space, precision measurements at extreme forward and
backward angles are useful in studying t- and u-channel production mechanisms.
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Figure 6.24: Comparison of dσ/d cos θK
CM measurements: SAPHIR 2004, CLAS g1c, g11a. The

plots above show differential cross section measurements from the CLAS g1c (red), SAPHIR 2004
(green), and this analysis (blue) versus center-of-mass energy in bins of production angle.
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Figure 6.25: Comparison of dσ/d cos θK
CM measurements: SAPHIR 2004, CLAS g1c, g11a. The

plots above show differential cross section measurements from the CLAS g1c (red), SAPHIR 2004
(green), and this analysis (blue) versus center-of-mass energy in bins of production angle.
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Figure 6.26: The plot above shows differential cross sections from the g11a (blue), CLAS g1c (red),
and SAPHIR 2003 (green) measurements. Agreement between the CLAS results is excellent, whereas
the SAPHIR results are ≈ 20% lower.

The LEPS results at forward angles occupy the energy range 1.934 GeV ≤
√
s ≤ 2.31 GeV

and three 0.1-wide cos θK
CM bins covering 0.70 ≤ cos θK

CM < 1.0. We present comparisons of these
results to our g11a measurements in overlapping cos θK

CM bins as indicated in Figure 6.27. From
these figures, we see that the high-statistics of the g11a dataset (the LEPS results represent only
2.2× 104 events) affords us a much finer binning in energy. Error bars for the most forward bin are
of comparable size for the two experiments, though at less forward angles, g11a produces a much
more precise measurement. We see that the LEPS results typically agree with the more forward of
our two overlapping cos θK

CM bins. The LEPS results confirm the downward trend in the g11a dσ in
the most forward bin except in the range 2.15 GeV ≤

√
s ≤ 2.25 GeV, where both results display a

bump feature. Otherwise, overall agreement is good.
The LEPS 2007 backward angle measurements encompass the energy range 1.95 GeV ≤

√
s ≤

2.29 GeV and are divided into two 0.1-wide bins in -1.0 ≤ cos θK
CM < 0.8. A comparison of these

measurements to our g11a measurements in overlapping bins are provided in Figure 6.27. Energy
binning for these measurements is much wider than that of the forward angle measurement. The
points from our g11a analysis are sparse in the most backward bin; however, the large error bars
on both results suggest that they are consistent. Comparison to the more forward LEPS bin is
obfuscated by the wide

√
s binning. The LEPS point at

√
s = 1.95 GeV is generally lower than our

points in that region, though it is a reasonable average of the shape of our cross section results. The
LEPS point at

√
s = 2.097 GeV is definitely lower than our points in the region. The trends versus√

s of the two results match well with an decent overall agreement in scale.

6.4.2 Λ Recoil Polarization

We now present comparisons to several previous measurements of the Λ recoil polarization, PΛ.
In the same paper which presented the first CLAS measurements of the γp → K+Λ differential
cross sections, J. McNabb et al. also published measurements of PΛ from thier analysis of the
g1c dataset [22]. McNabb used the traditional method of extracting PΛ which involves fitting the
proton momentum distribution in the Λ-helicity-frame, extracting the polarization from its slope.
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Figure 6.27: Comparison of dσ/d cos θK
CM Measurements: LEPS and g11a. The plots above show

differential cross section measurements from this analysis (blue tones) and the LEPS 2006 (a) and
2007 (b) measurements (red) versus center-of-mass energy in bins of production angle. All errors
are statistical.
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In order to bolster statistics for this method, McNabb consolidated bins from his differential cross
section measurement. Most of his quoted PΛ points represent 0.2-wide cos θK

CM and 0.25-MeV-wide
binning in Eγ . We present comparisons of our g11a results to the g1c results in Figures 6.28 and
6.29. Agreement between the two results is very good and displays the power and accuracy of our
extraction of via the Mother Fit. Several features of the polarization that are hinted at by the g1c
results are by our measurements.

We also present comparisons to PΛ measurements published by the SAPHIR Collaboration with
their 2004 differential cross section results [10]. Note that though there is a large discrepancy
between differential cross section results from the SAPHIR and CLAS analyses, agreement in the
recoil polarization, a normalization-independent quantity, is very good.

We conclude with a comparison of the most recent measurement of PΛ, that published by the
GRAAL Collaboration in 2007 (Lleres, et al. [23]). The GRAAL results cover the region 1.62 GeV
≤
√
s ≤ 1.92 GeV in six wide production angle bins (≈ 20◦-wide bins). Figure 6.30 shows that the

GRAAL measurements are in excellent agreement with those of g11a, and that they provide more
backwards coverage at low

√
s than g11a allows. Agreement is slightly better for our more forward

production angle bins. This can be explained by the forward-peaked differential cross section in this
energy range and GRAAL’s very wide production angle binning and their reporting of bin ranges
rather than bin centroids.

The overall agreement between our fit-extracted recoil polarization and the traditionally-extracted
measurements of previous analyses is validation of our method. The accuracy of our Mother Fit
combined with the enormous statistics of the dataset make the g11a results unmatched in precision
and range. Our measurement of the recoil polarization at energies above

√
s ≈ 2.6 GeV will allow

us a more accurate understanding of non-resonant production mechanisms.

6.5 Summary

We have measured differential cross sections and recoil polarizations for the γp→ K+Λ reaction in
the range 1.620 GeV≤

√
s < 2.840 GeV. We have calculated these quantities using both theK+p and

K+pπ− final-state topologies and shown that the independent results are consistent. These results
show many interesting features which we will scrutinize in the Chapter 8. The g11a measurements
of the differential cross section show very good agreements with previous CLAS and LEPS results
and sheds new light on discrepancies between SAPHIR and CLAS results. Our extraction of the Λ
recoil polarization shows excellent agreement with the world’s data. The g11a dataset has yielded
the most sensitive measurements of K+Λ photoproduction to date and is justified by its access
to energies above the resonance region (

√
s > 2.6 GeV). In the following chapter, we exploit the

precision of our measurement by performing a partial-wave analysis, searching for excited nucleon
production.
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Figure 6.28: The plots above show Λ recoil polarization measurements from this analysis (blue), the
previous CLAS (McNabb 2004) measurements (red), and the 2004 SAPHIR measurements versus
center-of-mass energy in bins of production angle. cos θK

CM ranges indicated on each plot indicate
the g11a measurements plotted. Most of McNabb’s measurements represent 0.2-wide cos θK

CM bins.
SAPHIR’s measurements represent roughly 30◦-wide angular bins. All error bars reflect statistical
errors only.
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Figure 6.29: The plots above show Λ recoil polarization measurements from this analysis (blue), the
previous CLAS (McNabb 2004) measurements (red), and the 2004 SAPHIR measurements versus
center-of-mass energy in bins of production angle. cos θK

CM ranges indicated on each plot indicate
the g11a measurements plotted. Most of McNabb’s measurements represent 0.2-wide cos θK

CM bins.
SAPHIR’s measurements represent roughly 30◦-wide angular bins. All error bars reflect statistical
errors only.



CHAPTER 6. DIFFERENTIAL CROSS SECTION AND Λ POLARIZATION 116

1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95

Λ
P

-1.5

-1

-0.5

0

0.5

1

1.5

 < -0.85K
CMθ cos≤g11a: -0.95 

 < -0.75K
CMθ cos≤g11a: -0.85 

 < -0.65K
CMθ cos≤g11a: -0.75 

 -0.8≈ K
CMθGRAAL - Lleres (07): cos

1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95

Λ
P

-1.5

-1

-0.5

0

0.5

1

1.5

 < -0.25K
CMθ cos≤g11a: -0.35 

 < -0.15K
CMθ cos≤g11a: -0.25 

 < -0.05K
CMθ cos≤g11a: -0.15 

 -0.17≈ K
CMθGRAAL - Lleres (07): cos

 (GeV)s
1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95

Λ
P

-1.5

-1

-0.5

0

0.5

1

1.5
 < 0.45K

CM
θ cos≤g11a: 0.35 

 < 0.55K
CM

θ cos≤g11a: 0.45 

 < 0.65K
CM

θ cos≤g11a: 0.55 

 0.5≈ K
CM

θGRAAL - Lleres (07): cos

1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95

Λ
P

-1.5

-1

-0.5

0

0.5

1

1.5

 < -0.55K

CM
θ cos≤g11a: -0.65 

 < -0.45K

CM
θ cos≤g11a: -0.55 

 < -0.35K

CM
θ cos≤g11a: -0.45 

 -0.5≈ K

CM
θGRAAL - Lleres (07): cos

1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95

Λ
P

-1.5

-1

-0.5

0

0.5

1

1.5
 < 0.05K

CM
θ cos≤g11a: -0.05 

 < 0.15K

CM
θ cos≤g11a: 0.05 

 < 0.25K

CM
θ cos≤g11a: 0.15 

 < 0.35K

CM
θ cos≤g11a: 0.25 

 0.17≈ K

CM
θGRAAL - Lleres (07): cos

 (GeV)s
1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95

Λ
P

-1.5

-1

-0.5

0

0.5

1

1.5
 < 0.75K

CMθ cos≤g11a: 0.65 

 < 0.85K
CMθ cos≤g11a: 0.75 

 < 0.95K
CMθ cos≤g11a: 0.85 

 0.8≈ K
CMθGRAAL - Lleres (07): cos

Figure 6.30: The plots above show Λ recoil polarization measurements from this analysis (blue
shades) and the 2007 GRAAL measurements (red) versus center-of-mass energy in bins of production
angle. cos θK

CM ranges for each result are indicated on each plot. Binning in production angle for
the GRAAL results is ≈ 20◦. All error bars reflect statistical errors only.



Chapter 7

Systematic Studies

In performing this analysis, we were fortunate that there were two existing high-precision measure-
ments of K+Λ photoproduction using the CLAS detector, the 2002 analysis of J. McNabb [12] and
the 2005 analysis of Robert Bradford [13]. Though both g1c and g11a were collected using the CLAS
detector, significant differences exist between the two run periods. Our preliminary extraction of
the differential cross section from the g11a dataset showed several systematic discrepancies when
compared to the CLAS g1c results. In an effort to understand these discrepancies, we investigated
possible causes and ultimately refined our g11a cross section. Our study of these sources of these
differences occupied the five months from November 2007 to March 2008.

Our reanalysis of the g1c dataset described in this chapter produced the same results as the
CLAS 2005 analysis. We then investigated several possible causes of systematic uncertainties in our
analysis of g11a including data reduction efficiency, Monte Carlo simulation, and trigger efficiency.
We have found that the main source of the discrepancy between the g1c and preliminary g11a
measurements is a triggering inefficiency due to Λ decays outside of the start counter that is not
simulated in the Monte Carlo. Once this inefficiency was discovered, we continued on to check g11a’s
internal consistency by comaring sector-wise differential cross sections.

The reader should remember that the purpose of this chapter is to describe checks of the g11a
dataset motivated by our preliminary results. (Our final measurements are presented in Chapter
6.) All of the cuts that resulted from the studies described in this chapter have been applied to the
analyses described in Chapters 3 and 4; this chapter shows the necessity of these cuts.

7.1 Preliminary g11a dσ and comparison to the CLAS g1c
result

The g1c run is a photoproduction on liquid hydrogen dataset that was recorded by the CLAS
Collaboration in the Fall of 1999. Though g1c and g11a were taken by the same detector, there are
several key differences in the experimental set-up of the two experiments. The g1c run utilized a
circularly polarized photon beam which enabled extraction of double-polarization observables, Cx

and Cz. The dataset was collected using a single-charged-track trigger, whereas the g11a trigger
required two charged tracks in the final state. The start counter used for g1c was a six coupled-
paddle design as opposed to the highly-segmented g11a start counter. Finally, the g1c physics target
was smaller than the g11a target (17.85 cm in length versus 40 cm, respectively) and was centered
in the CLAS detector. The full g1c dataset is comprised of three separate datasets yielded by
different accelerator beam energies: 2.4, 2.9, and 3.1 GeV. The 2.4 and 3.1 GeV datasets were used
by McNabb and Bradford to extract differential cross sections in the range 1.631 GeV ≤

√
s ≤ 2.533

GeV.
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John McNabb and Robert Bradford, then Carnegie Mellon University graduate students working
with Professor Reinhard Schumacher, produced independent analyses of the γp → K+Λ in the g1c
dataset. Both analyses relied on detection of the final-state p and K+ and identification of Λ
events via the p(γ,K+)Λ missing mass. Bradford’s initial extraction of dσ/d cos θ from the g1c
dataset yielded results that were systematically 10% lower than McNabb’s. Bradford then spent
a year examining differences between the two analyses and found that the discrepancy was caused
by problems with both McNabb’s and Bradford’s acceptance calculations. Bradford repeated both
analyses and found dσ/d cos θ measurements to be in excellent agreement [13]. Herein, we refer to
Bradford and McNabb’s combined efforts as the “g1c” results.

Our initial extraction of the γp → K+Λ differential cross section cross section also presented
disagreement with the g1c result. We provide plots of the two measurements in Figure 7.1. Rather
than a constant systematic discrepancy that would suggest a normalization error, the difference
between our preliminary g11a result and the g1c result increases with

√
s. Disagreement exists at

all cos θK
CM values; however, the discrepancy is more drastic in the forward direction (cos θK

CM ≥ 0.0).
Integrating the differential cross section over a well-populated range in cos θK

CM shows that the overall
discrepancy increases with

√
s, as shown in Figure 7.2. Thus, the discrepancy could not be explained

by an error in overall normalization.

7.2 Data reduction and topology differences

7.2.1 Application of Kinematic Fit to g1c

As stated in Chapter 3, our identification of γp→ K+Λ events in the g11a dataset via the K+pπ−

final state was extremely efficient. Our final working skim of the dataset was very clean, exhibiting
< 2% background in most

√
s bins. This cleanliness can be attributed to two specifics of the analysis:

the requirement that all three final-state particles be detected, and the use of the Kinematic Fitter
and confidence level-cuts to remove background. Neither of these methods were available to the g1c
analysis; a three-track final state would have yielded significantly lower statistics and a kinematic
fitter was not yet available at the time. Where we have used the kinematic fit to remove background
from our dataset, the g1c analysis used several well-engineered timing and missing mass cuts. As
such, we concerned ourselves with possible differences that could cause systematic differences between
the two measurements.

To investigate the effects of kinematic fitting, we skimmed possible K+Λ events from the g1c
2.4 GeV beam energy dataset using a two-track final state (K+p detected). We performed a 1-C
kinematic fit of all events to a γp → pK+(π−) hypothesis and kept events with a confidence level
greater than 1%. We then applied a cut which kept all events with a missing mass off of the K+ less
than 1.2 GeV/c2. Finally, we applied the same calculated mass cut described for our g11a three-
track analysis in §3.5 (mK+ < 0.8 GeV/c2 OR mp > 0.8 GeV/c2). In order to separate background
and signal events, we employed the background fitting method described in §3.8.

To calculate detector acceptance, we generated 5 × 106 phase-space Monte Carlo γp → K+Λ
events. We then processed the raw Monte Carlo with the standard CLAS analysis software with all
smearing parameters set as they were in the g1c analysis [13]. We calculated photon normalization
using gflux (see §4.5).

We then performed an unbinned maximum likelihood fit (“Mother Fit”) using s-channel ampli-
tudes with 1

2

± ≤ JP ≤ 11
2

± in each of four
√
s bins: 1.805GeV , 2.005GeV , 2.205GeV , 2.255GeV .

From these fits, we then extracted differential cross sections for the g1c dataset following the same
procedure discussed in §6.1. Comparisons of these results with previous g1c results in three

√
s bins

are shown in Fig. 7.3. Overall agreement is good, although our g1c results exhibit more statistical
fluctuation due to the narrower

√
s binning. Each of the four energy bins agreed with Bradford’s

result well. In none of these energy bins do we see discrepancies that would explain the ≈ 40%
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Figure 7.1: Comparison of g1c and preliminary g11a dσ
d cos θ for forward K+ angles. dσ

d cos θ is shown
above in bins of cos θK

CM versus
√
s. The preliminary g11a result is systematically lower than the

g1c result in most angles for most values of
√
s. In the very forward direction, the g11a dσ decreases

more strongly with
√
s than the g1c result.
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Figure 7.2: Comparison of dσ
d cos θ from g1c and preliminary g11a for γp → K+Λ, integrated over

−0.35 < cos θK
CM < 0.35 (a) This plot shows both the g1c and preliminary g11a results integrated

over the range −0.35 < cos θK
CM < 0.35. The disparity between the two measurements is apparent.

Plot (b) shows the ratio of the g11a measurement to the g1c measurement. The discrepancy increases
with increasing

√
s to a maximum of g11a

g1c ≈ 0.6.
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difference between g1c and g11a shown in Fig. 7.2.

7.3 Detector and Simulation Issues

There exist several major differences in the experimental setup of the CLAS detector for the the g1c
and g11a run periods. These include, but are not limited to, photon energy range, electron/photon
beam polarization, target location, start counter hardware, and triggering scheme. These differences
should all be taken into account by the CLAS Monte Carlo processing suite, GSIM. However, in light
of the discrepancies between the g1c and preliminary g11a results, we have scrutinized all elements
of our acceptance calculation. In this section, we outline our studies of TOF paddle efficiencies,
trigger simulation, and examination of triggering for data and Monte Carlo.

7.3.1 TOF Paddle Survey

At the time that our analysis began, a detailed study of systematic errors in the g11a dataset had
already been performed [62]. As a result of this study, detector components that were not functioning
properly during the g11a run period and could not be accounted for in Monte Carlo simulations were
identified. Cuts removing these detector components from our analysis were made manifest in the
form of fiducial cuts and TOF paddle knockout cuts discussed in §3.6. The analysis that produced
this study, however, used the much higher-statistics γp→ pπ+π− channel for most of its systematic
error analyses. The study makes no direct observation of CLAS’s acceptance for K+ tracks.

To investigate our ability to simulate the TOF counter’s detection of K+ mesons, we filled
histograms of occupancy versus TOF counter in each sector for data and accepted Monte Carlo.
These are shown in Figure 7.4. The differences between relative occupancies for data and Monte
Carlo show paddles in CLAS that are not adequately modeled by GSIM. Most of these paddles
are accounted for by the TOF knockout cuts prescribed by [62]. Unaccounted for, however, are
the number 23 TOF counters in sectors 1, 2, 3, 4, and 6 (paddle 23 was previously cut in sector
5). We see that the data occupancies for the number 23 TOF counter are low in comparison to its
nearest neighbors. The accepted Monte Carlo somewhat resembles this feature, however the level of
accuracy in the simulation is questionable.

In each sector of CLAS, TOF counter 23 is located on the edge between the two most forward
sections of the TOF wall. Paddles 23 and 24 overlap to a certain degree, making reconstruction of
tracks passing through the two paddles difficult to trust. Such events which confuse the tracking
software are assigned to TOF counter number 0 and are cut by this analysis. In light of these
inconsistencies, we also cut track which were associated with paddle 23 from our analysis in all
sectors. Exclusion of paddle 23 from our analysis produced localized increases in differential cross
section on the order of 2-3%.

7.3.2 Test of a momentum-dependent trigger efficiency simulation

As previously mentioned, the PWA group at CMU made use of the γp → pπ+π− reaction to
investigate systematic errors in the g11a dataset [62]. One of the most useful results of this analysis
is the trigger efficiency map described in §4.1.3. Because the g11a trigger efficiency is not simulated
by GSIM, scaling by the trigger efficiency for each type of particle is applied to the Monte Carlo.

Due to the channel used for their study, the CMU group did not glean any direct trigger efficiency
information for K+ tracks. The most accessible reaction for a similar analysis including kaons is the
γp → K+Λ → K+pπ− channel. However, due to the small break-up energy of the Λ → pπ−, the
vast majority of γp→ K+pπ− present a final state with the p and π− detected in the same sector.
Thus, the trigger would be set by at most two sectors. After careful study, we have determined that
no suitable channel exists in g11a for study of the K+ trigger efficiency.
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Figure 7.3: Comparisons of g1c differential cross sections: Bradford v. this analysis. (a) This plot
shows dσ/dcosθK+

CM results for
√
s ≈ 1.8 GeV bin. Bradford’s results are shown in black, the results

of this analysis in red. Overall agreement is good. Disagreement at the extreme edges is due to
low statistics. (b) This plot shows differential cross sections in the

√
s ≈ 2.005 GeV bin. Overall

agreement is again very good. (c) This plot shows our results in the
√
s = 2.255 GeV bin (red

points) along with those of Bradford’s
√
s = 2.249 GeV (black) and

√
s = 2.260 GeV (blue) bins.

Once again, agreement is good. We observe no systematic difference in the two results that would
suggest the trend shown in Fig. 7.2. From these, we conclude that analysis cuts are not the source
of the discrepancy between g11a and g1c results.
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Figure 7.4: Occupancies per TOF counter per sector for data and accepted Monte Carlo. Differences
in relative occupancies between data and accepted Monte Carlo per TOF counter hint at inconsis-
tencies in the CLAS simulation software. Most poorly-simulated paddles were previously excluded
from our analysis. Mismatch between occupancies for paddle 23 in all sectors motivate its removal
from further analysis.

In light of this, we attempted to refine the existing g11a trigger efficiency map. Because the main
components of the CLAS g11a trigger, the start counter and the TOF counters, are scintillator
detectors, we expect its efficiency to be dependent upon the momentum of a given track. We
have investigated this by repeating the study of the γp → pπ+π− channel in g11a with a further
segmentation of the data. For each particle type, we calculate an efficiency map as a function of φ,
TOF paddle, and track momentum (|~p|). We used a 500-MeV/c-wide binning in the range 0.0 GeV
< |~p| < 3.5 GeV for each particle type. We found no appreciable difference between the existing
g11a trigger efficiency map and the maps generated for any of the momentum bins for either the
p or π tracks. Thus, we use the existing efficiency map, applying the π+ map K+ tracks in our
analysis.

7.3.3 Start Counter

As described in Chapter 2, the g11a trigger required a coincidence between the tagger Master OR,
and the CLAS Level 1 trigger. Further, for the CLAS Level 1 trigger to be set, a coincidence was
required between the start counter and TOF wall in two different sectors. The Λ is a relatively
long-lived neutral particle, with cτ = 7.89 cm, on the same length scale as the start counter radius
(≈ 10 cm). Thus, we expect that there is a subset of K+Λ events for which the Λ decays into its
charged daughter particles outside of the start counter. As the start counter is a scintillator detector,
such events (neglecting any incidental hits from other events or cosmic backgrounds) would not set
the CLAS Level 1 trigger in the sector associated with the Λ. Such an effect is not compensated for
in the Monte Carlo, as GSIM provided no trigger information from the start counter.

Secondary Vertex Cut

To investigate this, we plot the secondary vertex (Λ decay vertex) positions calculated using MVRT
and the p and π− momenta for both data and accepted Monte Carlo (see Figure 7.5). The data
displays a significant drop in occupancy at the physical dimensions of the start counter; the Monte
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Carlo does not. In order to make the Monte Carlo more accurately reflect the data, we cut all events
for which the reconstructed secondary vertex is outside the physical dimensions of the start counter
(shown in Figure 7.5).

We then repeated our Mother Fit procedure with this start counter cut applied to both data and
Monte Carlo. The resulting differential cross sections are in better agreement with the g1c result
and are described below. In order to test the robustness of this cut, we repeated the analysis with
start counter cuts defined by different radial dimensions (distance from beamline to start counter)
smaller than the actual start counter. All cuts produced differential cross sections in agreement with
the cut defined by the actual start counter volume.

Though results from this “physical” secondary vertex cut were in much better agreement with the
g1c results, systematic differences of up to 10% still existed in some energy ranges. These differences
encouraged us to further investigate the efficiency of this cut. By scrutinizing the secondary vertex
diagrams presented in Figure 7.5, it is easy to see that using MVRT to reconstruct the Λ decay vertex
presents some resolution problems. In Figure 7.5(b), we see that there is some “bleed through” of the
calculated secondary vertex outside of the physical volume of the start counter. More interesting to
our analysis, however, are the ρ vs. z distributions shown in 7.5(a) and (c). While MVRT is efficient
for many vertexing applications, it is understandable that it would have problems reconstructing
the Λ decay vertex due to the small opening angle of the proton and π−.

Λ Decay Simulation for Monte Carlo

In light of the inefficiencies of the “physical” start counter cut, we sought to create a “statistical”
cut that would be applied only to the Monte Carlo. This cut is based upon determining the distance
that a Λ would have needed to travel in order to have decayed outside of the start counter based
on its primary (event) vertex position and momentum. For each Monte Carlo event, we begin by
calculating the event vertex, ~r0 = (x0, y0, z0) by applying MVRT to theK+ momentum and idealized
beam position. We then reconstruct ~pΛ = (pΛ, θ, φ) as the sum of proton and π− momenta. We may
then calculate the point of intersection, ~rint = (xint, yint, zint), between ~pΛ and the start counter. If
the point of intersection lies in the main body of the start counter (zint ≤ 12 cm), the path length,
l between event vertex and the intersection is easy to calculate and is given by

l =
(10cm)

sin θ cosφ′
. (7.1)

Here, 10 cm is the shortest distance from the beam line to the start counter and φ′ is the azimuthal
angle in each sector, φ′ ∈ [−30◦, 30◦]. If the point of intersection is in the nose of the start counter
(zint > 12 cm), geometry makes the calculation a bit more complicated, giving

l =
12cm+ 10cm− z0
cos θ + sin θ cosφ′

. (7.2)

Using the Λ’s characteristic lifetime, τ = 2.63× 10−10 s, we can then calculate the characteristic
lifetime of the Λ as observed in the laboratory frame to be

t = γτ =
τ√

1− β2
, (7.3)

where β is calculated from ~pΛ. We also calculate the distance d that the Λ would have traveled in
time t to be

d = βct. (7.4)

Finally, we consider the exponential nature of the Λ decay and construct the probability P (β) that
the given Λ will intersect the start counter before it decays as

P (l, β) = exp{−l/d} = exp{−l/(βct)} (7.5)
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Figure 7.5: Λ decay vertices for g11a data and Monte Carlo. The plots above show Λ decay vertices
for g11a data ((a) and (b)) and accepted Monte Carlo ((c) and (d)). Plots (a) and (c) show distance
from beam-line (ρ) v. z. Plots (b) and (d) show distance from y v. x. In all plots, start counter
dimensions are shown by thin red lines. The effect of the start counter in the data is striking. Events
which for which the Λ decays outside of the start counter do not set the CLAS Level 1 trigger and
are thus not recorded in the data. This effect is not reproduced in the Monte Carlo. (e) and (f)
show the accepted Monte Carlo events kept by our cut on secondary vertex position (applied to MC
and data).



CHAPTER 7. SYSTEMATIC STUDIES OF g11a 126

W (GeV)
1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6

b)µ
 (σ

0

0.02

0.04

0.06

0.08

0.1

0.12

CLAS g1c Braford 2005

g11a FINAL statSTcut tof1 fid7

 < 0.35θ, -0.35 < CosσIntegrated d

CLAS g1c Braford 2005

g11a FINAL statSTcut tof1 fid7

CLAS g1c Braford 2005

g11a FINAL statSTcut tof1 fid7

Figure 7.6: Shown above is a comparison of the differential cross section results from g1c (black) and
this analysis (red) integrated over the range [−0.35, 0.35]. The g11a result includes the statistical
start counter simulation as described in the text. Agreement between the two results is far better
than that shown in Figure 7.2.

In order to treat this decay in a probabilistic manner, we generate a random number n in the interval
[0, 1]. If n < P (l, β) for the given event, then we cut the event.

The cut described above treats the decay of the Λ in the Monte Carlo in a statistical way in that
it generates a probability that a given Λ decayed outside of the start counter. This is satisfying as
the same effect has already been imposed on the data by nature. More importantly, the cut depends
only on the momentum resolution for the proton and π− tracks. When we apply the cut, we find
very good agreement with the g1c results. To lend creedence to this cut, we show a comparison
of the integrated differential cross sections in Figure 7.6. Comparisons of the full differential cross
section results are given in §6.2.3.

One final feature of this cut deserves comment. The cut described above imposes the effect
of triggering on the Monte Carlo in a purely statistical way. By applying it, we are removing a
fraction of events equal to the start counter’s effect on the data. However, as we do not explicity
take into account the actual location of the Λ decay vertex, the secondary vertex distributions of
data and Monte Carlo do not display the same shape. As the Λ path length is still relatively small
when compared to the scale of the CLAS detector, this mismatch does not seem to introduce any
systematic discrepancies.

7.4 Comparison of Sector-wise dσ/d cos θKCM

After general agreement with the g1c differential cross section results was achieved, we sought to
check the g11a result for internal consistency. Fortunately, the nature of the CLAS detector allows
comparisons of differential cross sections calculated from each sector. We have calculated differential
cross sections treating each of the six sectors of CLAS as an independent detector, receiving one
sixth of the flux associated with the whole detector. We find the agreement between differential
cross sections resulting from sectors 1, 2, 3, 4, and 6 to be satisfactory. However, sector 5 displays
a significant systematic discrepancy when compared to the average dσ from the other sectors. In
Figure 7.7, we provide plots of the ratio of the sector 5 dσ/d cos θ to that of the other sectors
combined. The dip in the sector 5 cross section is apparent in two 0.1-wide cos θK

CM bins and over
a nearly 400 MeV range in

√
s.

In the center-of-mass frame, it is difficult to ascertain whether this difference is due to a single
detector element. For a more instructive comparison, we project these dσ values onto their lab-frame
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Figure 7.7: The plots above show the ratios of dσ/d cos θK
CM values from sector 5 to those from sectors
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CM < 0.35 (left) and 0.35 ≤ cos θK

CM < 0.45
(right) bins. The dip in the sector 5 cross section is apparent in both angular bins over a significant√
s range.

production angle (θK+

lab ) and K+ track momentum coordinates. We find that the declivity in the
sector 5 measurements occurs at a fixed lab angle and is independent of track momentum. The effect
is localized in the region 0.45 ≤ θlab < 0.55. This effect is shown in Figure 7.8. Because the effect is
independent of momentum, it must take place before tracks are bent by the magnetic field. Thus,
we attribute the defect to an inefficiency in the Region 1 drift chamber in sector 5. This problem
is clearly not modeled by the Monte Carlo, and we thus cut from our analysis all tracks (p, K+,
and π−) that pass through sector 5 with 0.45 ≤ θlab < 0.55. This cut restores consistency to the
sector 5 cross section, though at the cost of statistics in this kinematic region. Though this subtle
improvement of the sector 5 cross section does not have a significant effect on the total cross section,
we count our ability to identify it as a tribute to the sensitivity of the detector.

7.5 Summary

The accuracy of this analysis benefits greatly from the existing analyses of the CLAS g1c dataset.
By comparing to these previous analyses, we were able to identify several subtle issues, leading to
much more accurate results. The most significant of these corrections was our simulation of the
start counter’s effect on triggering in g11a. After remedying the problems outlined in this chapter,
we have found agreement between the results of this analysis and the CLAS g1c analyses to be quite
good, as demonstrated in Chapter 6. Of all of the effects investigated in this chapter, only the start
counter’s effect on triggering and the resulting start counter simulation for Monte Carlo cause a
systemaitc shift in differential cross section results.

We performed checks of g11a’s self-consistency by comparing acceptance-corrected yields from
independent CLAS sectors. A slight dicrepancy between the acceptance-corrected yields of sector 5
was remedied by a cut on track polar angle in the lab frame. After this cut is applied, results from
individual sectors agree quite well, indicating that our acceptance calculation is satisfactory.
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Figure 7.8: Shown above are differential cross section values versus K+ production angle and track
momentum in the lab frame. Figure (a) shows the location of differential cross section points. Figure
(b) shows the ratio of the sector 5 cross section to the combined cross section from the other sectors.
The scale of (b) shows a ratio of 1.0 in red and fades to a ratio of 0.4 in green.



Chapter 8

Partial Wave Analysis of γp → K+Λ

.
In Chapter 6, we presented differential cross section and recoil polarization measurements for

the γp → K+Λ reaction in the energy range 1.62 GeV ≤
√
s < 2.84 GeV. By comparing these

results with previous measurements, we have shown that the g11a results represent the most precise
characterization of this reaction to date. In this chapter, we take our analysis a step further and
investigate the physical processes by which the K+Λ system is photoproduced. We separate these
production mechanisms into two types: non-resonant production (t- and u-channel processes) and
resonant production (s-channel processes). In §8.2, we examine the non-resonant contributions to
this reaction by developing our own t-channel model motivated by previous studies. In the sections
that follow, we perform a partial wave analysis via binned χ2 fits to g11a differential cross section
and recoil polarization measurements and g1c beam-recoil polarization measurements. We have
isolated two

√
s regions in which we find interesting s-channel contributions. In this chapter, we

present our in-depth studies of possible N∗ states in these regions.
To investigate the presence of excited nucleon intermediate states in our reaction, we use the

mass-independent partial wave analysis technique. In §5.6.4, we described the form of s-channel
amplitudes used for this analysis. One factor in the calculation these amplitudes is the Feynman
propagator which describes the transition amplitude for an intermediate particle to propagate be-
tween the two vertices in an s-channel diagram. To calculate the total probability for a given process,
one must evaluate the propagator at all values of the exchanged momenta. By binning our data
finely in

√
s, we are able to approximate the amplitudes in each bin by evaluating their propagator

at the bin centroid. We then determine the contributions of the individual s-channel waves in each
narrow

√
s bin independently. No a priori assumptions need be made about the s-dependence (and

thus the mass-dependence) of the partial waves. After analyzing all bins independently, s-channel
contributions in neighboring bins can be compared, and s-dependence to may be noted.

All fits presented in this chapter are binned χ2 fits. As discussed in Chapter 5, we employ binned
fitting as a way of including other measurements in our partial wave analysis, namely the g1c double
polarization observables Cx and Cz. In §8.1 of this chapter, we present our method of projecting
these observables from our amplitudes. Recall that binned fitting differs from unbinned likelihood
fitting in that its fewer number of degrees of freedom typically limits fit stability. For all fits we
present in this chapter, this compromise of stability is mitigated by multiple fit iterations (at least
twenty, unless otherwise noted) with randomized initial values for fit parameters.

8.1 Fitting to Double-Polarization Observables: Cx and Cz

In 2006, the CLAS Collaboration published measurements of γp → K+Λ beam-recoil polarization
asymmetries, Cx and Cz, from the g1c dataset [83]. The use of circularly polarized photons (i.e.

129
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polarization aligned or anti-aligned with the direction of photon momentum) for the g1c run period
allowed for a net polarization of the Λ in the production plane. To add analysis power to our partial
wave analysis, we use these data as well as our g11a results.

For what follows, we define a coordinate system in which ẑ lies along the photon direction and ŷ
along ~k×~q, where ~k and ~q are the photon and K+ momenta in the center-of-mass frame. Thus, x̂ lies
in the production plane, perpendicular to ~k. Cx and Cz characterize the transfer of photon helicity
to the Λ hyperon in the x̂- and ẑ-directions, respectively. For a given circular beam polarization,
P� ∈ [−1.0,+1.0], and Λ polarization vector, ~PY = (PY x, PY y, PY z), Cx and Cz are defined by [84]

PY x = P�Cx (8.1a)
PY z = P�Cz. (8.1b)

The y-component of ~PY is simply the recoil polarization of the Λ discussed in §6.3. The g1c analysis
produced Cx and Cz measurements at 160 (

√
s, cos θK

CM ) values encompassing the energy range
1.652 GeV≤

√
s ≤2.473 GeV.

Though we cannot measure Cx and Cz directly with g11a we want the results of our partial wave
analysis to be consistent with these measurements. To include Cx and Cz in our PWA, we must
calculate the double-polarization observables from our amplitudes in the same manner as we have
PΛ at all (

√
s, cos θK

CM ) values for which there is a g1c result. Here we use the same technique put
forth in §6.3.1 (see section for notation conventions). For a given (

√
s, cos θK

CM ) value, we calculate
the amplitudes Amγ ,mi,M

γp→K+Λ, describing the γp → K+Λ process where mγ ,mi, and M are the spin-
projections along the z-axis of the photon, target proton, and Λ, respectively. We construct the
two-component wave-function for the process as

ψ(
√
s, cos θK

CM ) =
(
Amγ ,mi,M=+(

√
s, cos θK

CM )
Amγ ,mi,M=−(

√
s, cos θK

CM )

)
. (8.2)

We then use the Pauli spin matrices, σx and σz, from eq. (5.3) to compute PY x and PY z for a given
mγ and mi:

PY x(mγ ,mi) =
1
ζ
ψ†σxψ (8.3a)

PY z(mγ ,mi) =
1
ζ
ψ†σzψ, (8.3b)

where ζ = ψ†ψ is included for normalization. In extracting PΛ, we summed over the initial target
and photon spin polarizations. To project out Cx and Cz, we select a particular photon polariza-
tion, mγ = +, and sum over the target polarization states. By selecting mγ = +, we simulate a
fully polarized photon beam, thus setting P� = +1.0 in eq. (8.1). Including the sum over target
polarizations gives the full expressions

PY x = Cx =
1
N

∑
mi

(
A∗+,mi,+A+,mi,− +A∗+,mi,−A+,mi,+

)
(8.4a)

PY z = Cz =
1
N

∑
mi

|A+,mi,+|2 − |A+,mi,−|2, (8.4b)

where
N =

∑
mi

∑
M

|A+,mi,M (
√
s, cos θK

CM )|2. (8.5)

To include Cx and Cz in binned χ2 fits, we calculate amplitudes for all included production
mechanisms (s-, t-, and u-channel) for each of (

√
s, cos θK

CM ) for which there is a g1c measurement.
We use the statistical errors associated with the points from the g1c Cx and Cz results to calculate the
χ2 from fit parameters as prescribed by eq. (5.24). We then combine the χ2 values from differential
cross section, recoil polarization, and double polarization points as described by eq. (5.31).
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Figure 8.1: The diagram shown represents t-channel exchange of particle type
X = K,K∗(892),K1(1270). The amplitudes could be parametrized by individual coupling
factors, g, for each vertex. Each process considered in this analysis, however, has at least one
experimentally undetermined vertex (see text). (Image produced by [77].)

8.2 Fitting Non-resonant Processes

To ensure a reliable treatment of resonant contributions to our channel, a refined understanding
of the role of non-s-channel (i.e. t- and u-channel) production mechanisms is necessary. Several
analyses have considered these non-resonant contributions to K+Λ photoproduction in the past.
For the most part, these previous analyses have relied upon differential cross section measurements
well-above (

√
s ≥ 4.0 GeV [28]) or within ([25, 7]) the resonance region. Though these analyses have

produced interesting results regarding N∗ states coupling to K+Λ, neither of these approaches is
ideal. Furthermore, limited data on the Λ recoil polarization was available to these analyses. The
differential cross section and recoil polarization measurements presented in Chapter 6 of this analysis
allow us to study non-resonant contributions to the reaction in a

√
s region that is dominated by

t-channel processes (2.700 GeV ≤
√
s < 2.840 GeV), yet not far-removed from the resonance region.

Motivated by previous theoretical work [25, 7], we seek to describe the non-resonant contributions
to the γp → K+Λ differential cross section and polarization observables with a small set of t-
channel diagrams. For t-channel processes, we choose the exchanges of the the three lowest-mass
strange mesons for which a strangeness-conserving coupling to γK+ is possible. These are the K+,
K∗(895), and K1(1270) mesons with JP = 0−, 1−, and 1+, respectively. Full expressions for these
amplitudes are given in §5.6.3. Here, we only comment that each t-channel amplitude has three free
fit parameters: a coupling constant for the entire diagram and two form factor mass cut-offs, one
associated with each vertex. We require these parameters to be the same across all values of

√
s.

Furthermore, we require the mass cut-offs for corresponding vertices in the K∗ exchange to be the
same for electric and magnetic multipoles (i.e. ΛE

γK∗K = ΛM
γK∗K and ΛE

pK∗Λ = ΛM
pK∗Λ), as the radius

of the interaction should be mostly dependent only upon particle types. (Recall from §5.6.3 that
for the K∗ exchange, both electric and magnetic couplings are possible.) These constraints leave a
total of ten free t-channel parameters. Unfortunately, none of these parameters has been measured
experimentally. While measurements for coupling constants corresponding to particular vertices in
the t-channel diagrams are known (e.g. the K∗ → γK+ decay width has been measured), none of
the diagrams we consider has been fully characterized. Each of the diagrams contains (at least) one
unknown vertex coupling (see Figure 8.1). As such, we fold both vertex factors into a single overall
scale factor for each diagram and use this scale factor as a free fit parameter.

As was discussed in §6.2.3, the prominent peak in the K+Λ differential cross section at forward
angles (cos θK

CM > 0.4) and high center-of-mass energies (
√
s > 2.700 GeV) suggests the dominance of

t-channel exchange processes in this kinematic region. Our method for determining a suitable model



CHAPTER 8. PARTIAL WAVE ANALYSIS OF γp→ K+Λ 132

of non-resonant production is to perform a binned χ2 fit to our g11a measurements of the differential
cross section and recoil polarization in this range. Once the parameters of the t-channel amplitudes
have been determined (“locked”) in these high-

√
s bins, we use the implicit

√
s-dependence of these

amplitudes to extrapolate the non-resonant contributions into the resonance region.
We began by fitting the t-channel amplitudes described above to the g11a measurements in the

range 2.700 GeV≤
√
s <2.840 GeV and forward angles defined by t > −2.1 GeV2/c2. Here, the

range in t assures that we consider only points in the forward peak in the differential cross section.
The results of this fit produced a good description of our high-energy data; however, extrapolation
into the resonance region showed questionable results. Calculating the differential cross section
as prescribed by eq. (5.30) showed the non-resonant contribution to be larger than the measured
differential cross section by a factor of ≈ 2 in the near-threshold bins (

√
s < 1.7 GeV). Though

this effect could be mitigated by destructive interference between the t-channel diagrams and any
s-channel diagrams present in this region, it is unlikely that this is an accurate description of the
non-resonant production.

In light of this, we adapted our fitting technique to include the near-threshold differential cross
section, recoil polarization and g1c double polarization measurements. In addition to the high-

√
s

data, we fit to measurements in the range 1.620 GeV≤
√
s <1.680 GeV. In this low-

√
s region, we

cannot assume that production is dominated by t-channel mechanisms; we must add some s-channel
contribution to fit the data reliably. Of the known N∗ resonances, the PDG lists only the S11(1650)
as having a “likely to certain” coupling to K+Λ; experiments have shown convincing evidence of the
S11(1650) decaying to K+Λ [5]. Furthermore, the PDG lists the S11(1650) as having been observed
in several photoproduction experiments. We thus include the s-channel JP = 1

2

− wave in our fit in
the near-threshold bins. Inclusion of this wave adds a total of twelve parameters (one scale and one
phase parameter for each of the six low-

√
s bins) to the fit.

It should be noted that because we choose to fit only the forward peak of the high-energy data
where we are certain t-channel is the dominant production mechanism, performing a reliable fit
of any u-channel diagrams is difficult. u-channel production presents a characteristic backwards
peak in the differential cross section. While there is such a peak in the backwards direction in the
differential cross section for 2.60 GeV≤

√
s <2.77 GeV, it is small in comparison to the forward

peak. In this model of non-resonant production, we omit any u-channel processes.
Results of the non-resonant fit in a few characteristic bins are presented in Figure 8.2. Parameters

returned by the fit are provided in Table 8.1. The fit describes the general trend in the differential
cross section at high energies and forward angles. The t-channel amplitudes are not able to match
the shape of the Λ recoil polarization data at high

√
s, although the magnitude of PΛ is approximated

by the fit. This suggests that our fit lacks some s-channel diagram with which the t-channel can
interfere. In the low-

√
s bins, addition of the JP = 1

2

− resonance allows for a very good description
of the differential cross sections. However, structures in the polarization observables Cx and Cz that
are not reproduced by the fit again suggest that more waves are needed to describe the data in this
region.

Though the non-resonant fit cannot reproduce some features of the data at high energies, it
represents the best fit that can be made without making assumptions about s-channel states at
high-

√
s. Unlike the low-

√
s region, where experiment suggests the presence of a certain resonant

state, there is no clear choice for the addition of s-channel waves in this region. Figure 6.23 shows
that the recoil polarization for forward angles and

√
s > 2.2 GeV is approximately constant and of

the magnitude given by the model. Thus, we accept the model for use in our scans for s-channel
resonances. In §8.7, we show that the results of our partial wave analysis are robust by using a
different t-channel model.

Finally, we show the intensities of the non-resonant model and individual t-channel mechanisms
as they project to the lower-

√
s region in Figure 8.3. These are compared to the total cross section

in each bin. Note that inclusion of the near-threshold bins in the non-resonant fit has yielded a more
reasonable magnitude for the non-resonant terms at threshold.
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Figure 8.2: Results of the non-resonant model fits. Figure (a) shows the differential cross section
data (black) and fit (solid red) for the

√
s = 2.725 GeV bin. The strengths of the individual

t-channel diagrams are shown as well. Points included in the fit are those to the right of the
dashed vertical line (t > −2.0). Figure (b) shows the PΛ data (black) and fit result (red) in the√
s = 2.725 GeV bin. Figure (c) shows the differential cross section data (black), total fit (red),

and t-channel contribution in the
√
s = 1.675 GeV bin. Figure (d) shows the fit to Cx and Cz in

the
√
s = 1.675 GeV bin. Differential cross section data (black) and t-channel contributions (red)

projected into the
√
s = 2.005 GeV bin are shown in Figure (e).
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Fit parameter Description Value
ΛpK+Λ form factor cut-off for pK+Λ vertex 0.715

ΛγK+K+ form factor cut-off for γK+K+ vertex 0.713
gK+ coupling factor for K+ exchange 325

ΛpK∗Λ form factor cut-off for pK∗Λ vertex 0.690
ΛγK∗K+ form factor cut-off for γK∗K+ vertex 0.691
gE

K+ coupling factor for K+ exchange (electric coupling) 77.4
gE

K+ coupling factor for K+ exchange (magnetic coupling) 49.5
ΛpK1Λ form factor cut-off for pK1Λ vertex 0.902

ΛγK1K+ form factor cut-off for γK1K
+ vertex 0.902

gK1 coupling factor for K1 exchange 20.7

Table 8.1: Table t-channel of fit parameters from non-resonant fit
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Figure 8.3: Shown above are comparisons of the total cross section (black) and projections of the
full non-resonant model (red) and its component production mechanisms.
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Figure 8.4: Shown above are intensities of the s-channel proton exchange amplitudes with
gKΛN =9.0. At low

√
s, the contribution to the cross section is negligible. At high

√
s, the contri-

bution is roughly double the total cross section.

We also comment on the s-channel proton exchange amplitude described in eq. (5.66). Inclusion
of this diagram in partial wave analyses has historical roots which reach back to initial theoretical
studies of strangeness photoproduction in the 1960’s [24]. Recall that this amplitude is dependent
upon the coupling strength of the KΛN vertex expressed as the parameter gKΛN . Previous anal-
yses have included this diagram in large-scale partial-wave fits treating gKΛN as a free parameter.
However, the resulting values of gKΛN show a large dependence upon the resonant partial waves
that are included in these fits; literature generally suggests values between gKΛN =11.5 [78] and
gKΛN =3.65 [7]. To investigate the contribution of this process to our partial wave analysis, we used
a conservative estimate for this coupling, gKΛN =9.0 and calculated this amplitude at all values
of (

√
s, cosθK

CM ) for which we have a differential cross section measurement. Figure 8.4 shows the
total cross section resulting from this diagram as a function of

√
s. We see that at low

√
s, the total

cross section from the proton exchange is negligible. At high
√
s, however, this diagram’s intensity

is a factor of two larger than the total cross section, placing this amplitude in doubt. The effect
at high

√
s could possibly be mitigated by the inclusion of a form factor in the proton exchange

amplitude (as in eq. (5.53)). In the absence of a clear method for including this amplitude, we omit
it in this study, noting that its contribution in the region of interest to our partial-wave analysis
(
√
s <2.1 GeV) is small.

8.3 Single Partial Wave Scans

The starting point of our Partial Wave Analysis is a scan across all
√
s bins for single s-channel states.

In each
√
s bin, we performed a binned χ2 fit to all available observables (dσ, PΛ, and the g1c Cx

and Cz results) with our non-resonant model and one s-channel wave. Parameters of the s-channel
amplitudes were left free, while the t-channel parameters were locked to the values presented in the
last section. All s-channel amplitudes with 1

2 ≤ J ≤ 9
2 (both parities) were investigated. Multiple

fit iterations (≥ 15 iterations) were run in each
√
s bin with randomized initial values for free
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parameters to ensure fit reliability (i.e. that fits are not simply in local minima).
Plots showing the χ2 per number of degrees of freedom (ndf ) in each

√
s bin are provided in

Figure 8.5. Here, the number of degrees of freedom is given as the number of measurement points
included in the fit minus the number of free fit parameters. For bins in which we fit to all four
measurements, the number of degrees of freedom is generally between 45 and 55. Recall that for
binned χ2 fits, a χ2/ndf value of 1 signifies a suitable description of the data, whereas larger values
indicate poorer fits.

Several overall features of single-wave χ2’s are worthy of comment. First, no single fit produces a
χ2/ndf that suggests that the data is described by the t-channel model and a single s-channel wave.
Several waves show low χ2’s in specific

√
s regions, such as the 3

2

+ fit at
√
s ≈ 1.8 GeV and the 1

2

−

fit at threshold. Because the fits are not ideal, we do not assume that the single-wave description
is correct in any

√
s range. In light of this, we use the single-wave fit results as a suggestion of

possible of possible s-channel contributions. Definite enhancements in the χ2/ndf are apparent for
the JP = 1

2

− wave at threshold,
√
s ≈ 1.8 GeV, and

√
s ≈ 1.92 GeV. The JP = 3

2

+ wave displays
the best χ2/ndf over the range 1.82 GeV≤

√
s < 1.95 GeV. In the region above

√
s = 2.0 GeV, the

JP = 7
2

+ shows the best χ2/ndf .

8.4 Two Partial Wave Scans

In the last section, we showed that that no
√
s region can be described by a single s-channel partial

wave and our non-resonant model. We next performed χ2 fits to dσ, PΛ, and double-polarization
observables with the non-resonant model and two s-channel partial waves. Fits using each of the
45 two-wave combinations (for J ≤ 9

2 ) were performed. Once again, multiple fit iterations were run
with randomized initial values for s-channel fit parameters. Plots of the χ2/ndf in each

√
s bin in

each fit are provided in Figures 8.6 and 8.7. For the two-wave scans, however, we find it instructive
to also consider the individual intensity of each s-channel wave used. Figures 8.8 and 8.9 show the
intensities of each wave given by fits with the waves indicated.

To determine whether a certain partial wave’s contribution in a given
√
s region is valid, we

consider that wave’s intensity when fit with all other waves. If the wave shows appreciable intensity
regardless of what wave it is paired with, it is a good indication that the fit requires that partial
wave. If, however, the wave’s intensity is quenched when fit with any other wave, it’s contribution to
the reaction in that range is in doubt. As an example, we consider the JP = 1

2

− wave in the range
1.8 GeV≤

√
s <2.0 GeV. In this range, the intensity of the wave is sizable in all fits, suggesting that

the presence of the 1
2

− wave is likely. Conversely, the 3
2

− partial wave shows a large intensity in the
same range when fit with the 1

2

+, 5
2

+, or 7
2

− waves, but its intensity is quenched when fit with the
3
2

+ or 1
2

− waves. The 1
2

+ and 9
2

± (not shown) show no appreciable intensity at any
√
s values in all

fits.
From these results, we make several observations which will guide our Partial Wave Analy-

sis and lead to more focused investigation in the following sections. In the near-threshold region
(
√
s <1.8 GeV), the 1

2

− and 3
2

+ partial waves show the most dominant intensities. This is consistent
with previous analyses of the γp→ K+Λ reaction. The PDG lists a four-star JP = 1

2

−
N∗ resonance

at 1.65 GeV, with a three-star rating for coupling to K+Λ, as well as a four-star 3
2

+ state at 1.72 GeV
with a two-star coupling to K+Λ. Also in this region, the 3

2

− partial wave shows intensity (albeit
smaller) in all fits. It is encouraging that the PDG also lists coupling of K+Λ to the D13(1700) with
a two-star rating. Though its intensities do not suggest a large contribution in these bins, we see
that the presence of a 5

2

+ partial wave is suggested by the χ2/ndf from the two-wave scan with 5
2

+

and 3
2

+ waves. The PDG also lists a two-star coupling to K+Λ for the four-star F15(1680) state. In
§8.5, we investigate this region with these four partial waves as primary candidates.
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Figure 8.5: The plots above show the χ2/ndf from fits of the non-resonant model and a single
s-channel partial wave. Figures (a) and (b) show positive and negative parity waves, respectively.
The vertical scale is the same in both plots.
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Figure 8.6: Shown above are the χ2/ndf in each
√
s bin for each two-wave scan. Each plot shows

all fits involving a certain partial wave. Figures (a), (b), (c), and (d) show all fits which include the
1
2

−, 1
2

+, 3
2

−, and 3
2

+ waves, respectively.
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Figure 8.7: Shown above are the χ2/ndf in each
√
s bin for each two-wave scan. Each plot shows

all fits involving a certain partial wave. Figures (a), (b), (c), and (d) show all fits which include the
5
2

−, 5
2

+, 7
2

−, and 7
2

+ waves, respectively.
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Figure 8.8: Shown above are the intensities of individual s-channel waves when fit with the wave
combinations indicated. For example, plot (a) shows the intensity of the 1

2

− partial wave when
fit with each of the other waves indicated. From this plot, we see that the 1

2

− wave has a sizable
intensity at

√
s = 1.9 GeV in all fits, but its intensity is the least when paired with the 3

2

+ partial
wave. Shown are the JP = 1

2

− (a), 1
2

+ (b), 3
2

− (c), and 3
2

+ (d) partial waves.
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Figure 8.9: Shown above are the intensities of individual s-channel waves when fit with the wave
combinations indicated. For example, plot (b) shows the intensity of the 5

2

+ partial wave when fit
with each of the other waves indicated. From this plot, we see that the 5

2

+ wave displays a significant
intensity at

√
s = 2.0 GeV in all fits, but its intensity is lowest when paired with the 5

2

− partial
wave. Shown are the JP = 5

2

− (a), 5
2

+ (b), 7
2

− (c), and 7
2

+ (d) partial waves.
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In the region 1.8 GeV≤
√
s <2.0 GeV, we see a large intensity in the 1

2

− partial wave. Though
the PDG lists the one-star S11(2080) as the only known resonance in this region, Quark Model
calculations predict a resonance with these quantum numbers at 1.945 GeV. Furthermore, the 3

2

+

partial wave shows a very large intensity in this region. The PDG lists one two-star 3
2

+ state at
1.9 GeV and Quark Model calculations predict four states in this range. We also observe intensities
in the 5

2

± and partial waves. In §8.6, we investigate these waves’ contributions to the reaction in
this energy range.

8.5 Near-Threshold Bins:
√

s < 1.8 GeV

Guided by the two-wave scans in the last section, we began our investigation of the near-threshold
bins (

√
s <1.8 GeV) with the 5

2

+ and 3
2

+ waves. Recall that this pair produced the best χ2/ndf in
the low-

√
s range. In Figure 8.10(a), we present the cross section results from this fit. In the two-

wave scans, all s-channel parameters were allowed to vary freely with no bin-to-bin constraints. This
is encouraging when we consider the previously observed states in this region. The PDG lists the
four-star F15(1680) and P13(1720) states in this region, both of which have a two-star-rated coupling
to K+Λ. Each of these observed states is associated with a state from Quark Model calculations [2].

8.5.1 Multipole Coupling Constraint

Following the work of [4], we may impose a further physical constraint on the s-channel waves
via their multipole couplings. In §5.6.4, we discussed the role of the multipole couplings of γp to
JP states. Recall that in the L − S basis, three Lorentz-invariant amplitudes (AJP

1 , AJP

2 , AJP

3 )
can be constructed describing γp → JP , but that these amplitudes are not linearly-independent
functions of production angle; two of the three amplitudes differ only by an energy factor and
cannot be distinguished at a fixed value of s. In order to avoid this ambiguity, we construct our
amplitudes in the multipole basis where the amplitudes AJP

E and AJP

M characterize the electric and
magnetic couplings of the γp and JP states. In §6.1.1, we presented our parametrization of s-channel
amplitudes in terms of the angle θJP , which dictates the ratio of electric and magnetic couplings
(see eq. (6.4)). The L− S and multipole bases are related by

cos(θJP (s))AJP

E + sin(θJP (s))AJP

M = αAJP

1 + βAJP

2 + γAJP

3 , (8.6)

where α, β, and γ are the (s-independent) couplings to the L − S basis amplitudes. If the full
JP amplitude describes a single state, it is shown that the multipole production angle obeys the
relationship [4]

θJP (s) = tan−1 γ

α+ β/E2
γCM

= tan−1 1
a+ b/E2

γCM

, (8.7)

where we have written α/γ = a and β/γ = b. We may constrain the multipole angles, θ 5
2
+ and θ 3

2
+ ,

across all bins in our fit to the form of eq. (8.7), replacing each wave’s 18 individual θ fit parameters
(one in each

√
s bin) with two fit parameters representing a and b in eq. (8.7).

We then fit all bins with
√
s < 1.8 GeV simultaneously enforcing the multipole constraint.

Results of this fit are shown in Figure 8.10(b). Notice that the intensity profiles of both waves is
changed dramatically from the previous fit. It is interesting to note that both waves now display
intensity shapes that are suggestive of the mass and width parameters as listed in the PDG. Figure
8.11 shows the χ2/ndf in each bin from the two fits. The added multipole constraint limits the fit’s
ability to describe the data, producting a much worse χ2/ndf in these bins.
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Figure 8.10: Shown above are results from fits of the non-resonant model and s-channel JP = 5
2

+

and 3
2

+ waves in the
√
s <1.8 GeV bins . Figure (a) shows intensities from a fit with the multipole

coupling parameters of both waves free. Figure (b) shows intensities from a fit with multipole
parameter constrained across all bins according to eq. (8.7). All error bars represent MINUIT
errors.
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Figure 8.11: The plot above shows chi2/ndf for each of the indicated fit schemes. The fit with 5
2

+

and 3
2

+ waves with multipole couplings free (black circles) produces a fair χ2/ndf . Constraining the
multipole parameter for both of these waves (red squares) reduces their ability to describe the data.
Also shown is the fit with 5

2

+, 3
2

+, and 1
2

− waves with θ 5
2
+ and θ 3

2
+ constrained.

8.5.2 Fit with JP = 5
2

+
, 3

2

+
, and 1

2

−
Partial Waves

In light the inability of two waves to describe the data, we sought to add a third wave to the fit at
threshold. By inspecting the intensities from the two-wave scans, we see that the 1

2

− partial wave is
a good candidate; it shows sizable intensity in all two-wave scans in this energy range. Furthermore,
the PDG lists a state with these quantum numbers, the four-star S11(1650), with a three-star-rated
coupling to K+Λ. We thus performed a fit with the 5

2

+, 3
2

+, and 1
2

− partial waves in bins with√
s < 1.8 GeV. In this fit, we again imposed the multipole constraint of eq. (8.7) to θ 5

2
+ and θ 3

2
+ .

Recall from §5.6.4 that the J = 1
2 amplitudes have only an electric or magnetic coupling. Thus, no

further constraint is applied to the 1
2

− wave. The intensities resulting from this fit are displayed in
Figure 8.12. We see that the 1

2

− is the dominant wave in this fit, and that its shape is suggestive of
the four-star S11(1650) state. The 5

2

+ and 3
2

+ waves mainain the shapes that were seen in Figure
8.10(b), but their intensities are now decreased in magnitude. The χ2/ndf from this fit is displayed
in Figure 8.11. We see that addition of the 1

2

− wave has greatly improved the description of the
data.

Further evidence of the presence of resonant states in this region is given by the difference in
the phase parameters for pairs of partial waves. Figure 8.13 shows the phase differences, ∆φ =
φ

J
P1
1
− φ

J
P2
2

, for each pair of waves. If we assume that each of the waves is describing a single
resonant state, we can calculate the amplitude for each of the waves using a constant-width Breit-
Wigner given by

BW (s) =
mΓ

s−m2 + imΓ
, (8.8)

where m and Γ are the mass and width of the resonance. The Breit-Wigner describes the s-
dependence the of the propagator of each resonant amplitude. For each resonance, we can then
calculate the Breit-Wigner phase, given by

α(s) = tan−1

(
−mΓ
s−m2

)
. (8.9)

For two overlapping resonant states, j and k, with different quantum numbers, the Breit-Wigner
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Figure 8.12: Shown in (a) and (b) are intensities from fits to
√
s <1.8 GeV bins of the non-resonant

model and s-channel JP = 5
2

+, 3
2

+, and 1
2

− waves. The multipole coupling parameters of the
JP = 5

2

+ and 3
2

+ waves were constrianed in this fit. The scale is increased in Figure (b) to show
the shape of the JP = 5

2

+ and 3
2

+ waves’ intensities.
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Figure 8.13: Shown above are the phase differences for each pair of s-channel waves in the fit with
5
2

+, 3
2

+, and 1
2

−. The relevant waves are listed on each plot. Dashed red curves represent the
theoretical phase motion using PDG average mass and width parameters. The solid magenta curves
represent a fit of the theoretical phase motion allowing mass and width parameters within PDG
limits.

phase difference is given by

∆φ(s) = αj − αk

= tan−1

(
−mjΓj

s−m2
j

)
− tan−1

(
−mkΓk

s−m2
k

)
. (8.10)

To apply this theoretical phase motion to a pair of waves, we must identify a
√
s region in which

both show appreciable intensity. For example, the phase difference between the 5
2

+ and 3
2

+ waves
is given in Figure 8.13(a). We see that both of these waves display appreciable intensity in the

√
s

range 1.64 GeV to 1.75 GeV. The phase difference in this region shows a smooth trend similar in
shape to the theoretical phase motion given by the PDG average mass and width values for the
F15(1680) and P13(1720) states (shown by the dashed red curve). If we allow the mass and width
values of both states to vary within the ranges listed by the PDG, we may fit eq. (8.10) to the
observed phase differences. This fit (solid magenta curve) gives a mass of 1680 MeV and width of
140 MeV for the 5

2

+ wave and a mass of 1739 MeV and width of 150 MeV for the 3
2

+ wave with a
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χ2/ndf of 0.20. This match of phase difference and the shape of the intensities for both of the waves
is consistent with the contribution of both the F15(1680) and P13(1720) in K+Λ photoproduction.

For the 3
2

+ and 1
2

− waves, we identify sizable intensities in the
√
s region from 1.65 GeV to

1.76 GeV. The phase difference for these two waves (Figure 8.13(b)) is smooth and shows a shape
and magnitude similar to the theoretical phase motion for the P13(1720) and S11(1650) states. Once
again, we allow the mass and width parameters to vary within the limits quoted by the PDG and
fit eq. (8.10) to the measured phase difference. This fit gives masses and widths of 1700 MeV and
218 MeV for the 3

2

+ wave and 1660 MeV and 185 MeV for the 1
2

− wave with a χ2/ndf of 0.95. Once
again, phase differences and intensity profiles are consistent with the contribution of the P13(1720)
and S11(1650) N∗ states to K+Λ photoproduction.

Finally, we consider the phase difference between the 5
2

+ and 1
2

− waves shown in Figre 8.13(c).
For these waves, we indentify the range 1.64 GeV≤

√
s <1.75 GeV as having significant contributions

from both waves. The phase motion is once again smooth in this region, however, its shape and
scale differ from the Breit-Wigner description. The PDG mass and width ranges for the F15(1680)
and S11(1650) states do not allow a good fit of eq. (8.10) to the observed phase differences. The
inability of the Breit-Wigner phase difference to describe the data could be explained by multiple S11

states in this energy range. Previous analyses [36] have considered the contribution of the four-star
S11(1535) state to the K+Λ channel. If this coupling is non-negligible in this region, the single-state
Breit-Wigner hypothesis is inapplicable. Thus, we comment only that the phase differnce between
these two waves displays interesting phase motion and warrants further study as more data becomes
available.

Fianlly, we provide in Figure 8.14 plots of this fit’s description of the differential cross section
and polarization data in this region. We see that fits in most bins are very good (as demonstrated
by the χ2/ndf in Figure 8.11). As shown for the

√
s =1.735 GeV and 1.765 bins, the fit has trouble

reproducing the recoil polarization at backward angles. This could suggest the presence of u-channel
contributions which our non-resonant model lacks. This mismatch could also suggest the presence
of further N∗ states in this energy regime. This is not surprising, as two other states have been
observed to couple to K+Λ with two-star ratings. Motivated by this, we have attempted to add the
3
2

− and 5
2

− states to the fit, but results were inconclusive. Here, we simply comment that the three
waves used do not provide a full description of the data and we do not rule out the possibility of
other states.

8.6 JP = 1
2
−

and 3
2
+

Partial Waves: 1.8 GeV≤
√

s <2.0 GeV

The two-wave scans in §8.4 suggest the contribution of the 1
2

− and 3
2

+ partial waves in the range
1.8 GeV≤

√
s <2.0 GeV. We see from Figure 8.8 that both waves show sizable intensity in this

range when fit with any other wave. The intensity of the 3
2

+ wave is consistent in all fits; it displays
wide contribution from threshold to

√
s ≈2.0 GeV. The 1

2

− intensity shows a very interesting shape;
its intensity when fit with the 3

2

+ wave has a smooth shape suggestive of a resonant state. It is
important to note that in all of the two-wave scans involving the 1

2

− partial wave (excluding the
fit with 3

2

+), the 1
2

− wave has a larger intensity that the other partial wave for
√
s in the range

1.88 GeV to 1.95 GeV. This is a strong indicator of the presence of a 1
2

− state in this range.
The fit with 3

2

+ and 1
2

− together shows interesting structure in both waves’ intensities. Figure
8.15 shows the intensities in this range from the fit with 3

2

+ and 1
2

− partial waves and the non-
resonant model. All s-channel fit parameters were left free in this fit. The 3

2

+ contribution to the
cross section is very wide. The 1

2

− partial wave shows two peaks in this range, one at
√
s ≈1.9 GeV

and one at
√
s ≈2.0 GeV.
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Figure 8.14: Shown above are comparisons of data and 5
2

+, 3
2

+, 1
2

− fit results in the
√
s =1.665 GeV

(a), 1.705 GeV (b), 1.735 GeV, and 1.765 GeV (d) bins. In each row, plots show dσ, PΛ, and
double-polarization observables from left to right.
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Figure 8.15: Shown in (a) are the intensities from the 3
2

+ (red) and 1
2

− (blue) partial waves and the
non-resonant model (open circles). All s-channel fit parameters were left free in this fit. The 3

2

+

shows a broad contribution from 1.8 GeV to 2.05 GeV, while the 1
2

− wave shows a peak at 1.9 GeV
and one at 2.0 GeV. Figure (b) shows the intensities from a fit of 3

2

+, 12
− waves with θ 3

2
+ constrained

as in eq. (8.7).
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Figure 8.16: Shown above are the phase differences ∆φ = φ 3
2
+ − φ 1

2
− from fits with 3

2

+ and 1
2

−

s-channel waves and the non-resonant model. The points display interesting motion in the range
1.83 GeV to 1.92 GeV. The dashed red curve shows a theoretical phase difference for a 3

2

+ state
with a mass of 1850 MeV and width of 150 MeV and a 1

2

− state with mass 1950 MeV and width
100 MeV.

.

We then applied the single-state hypothesis by fitting the 3
2

+ and 1
2

− waves in bins in the range
1.8 GeV≤

√
s <2.0 GeV simultaneously with the 3

2

+ wave’s multipole parameter constrained as
prescribed by eq. (8.7). We found that with this further constraint, the 3

2

+ partial wave’s intensity
is greatly diminished in this range (see Figure 8.15(b)). This suggests that the 3

2

+ contribution in
this

√
s range is not due to a single resonance. While the PDG lists only one such N∗ state in this

region, the two-star P13(1900), Quark Model calculations predict states at 1870 MeV, 1910 MeV,
and 1950 MeV. Thus, for further fits in this region, we allow the 3

2

+ multipole coupling to vary
freely from bin to bin.

We now turn our attention to the peak in the 1
2

− intensity at
√
s ≈ 1.9 GeV. We associate the

1
2

− strength for
√
s in the range 1.83 GeV to 1.93 GeV with this structure. A plot of the phase

differences ∆φ = φ 3
2
+ − φ 1

2
− is provided in Figure 8.16. The phase differences in this range display

an interesting downward trend, as we would expect from 3
2

+ states at
√
s ≈ 1.8 GeV and a 1

2

−

state at ≈ 1.92 GeV. For comparison, we have included in Figure 8.16 a theoretical phase difference
(dashed red curve) generated assuming a 3

2

+ state with a mass of 1850 MeV and width of 150 MeV
and a 1

2

− state with mass 1950 MeV and width 100 MeV. The data displays a very similar trend
to the curve. Because we believe there could be multiple 3

2

+ states in this
√
s range, however, we

cannot apply the the Breit-Wigner description to interpret the phase differences between the 3
2

+

and 1
2

− waves.
Figure 8.15(a) also shows a peak in the 1

2

− intensity at
√
s ≈2.0 GeV. However, this peak is

suspicious as many of the two-wave scans show non-zero intensity at
√
s = 2.0 GeV. Furthermore,

the single- and double-wave scans show a dramatic rise in χ2/ndf at this
√
s value. These lead us

to believe that an adequate description of the data at
√
s =2.0 GeV cannot be achieved with two s-

channel waves alone. To investigate the validity of the 1
2

− contribution at this
√
s value, we performed

a series of three-wave fits in the range 1.8 GeV≤
√
s <2.1 GeV. Motivated by the results of the two-

wave scans, we chose the JP = 5
2

± and 7
2

+ waves as possible candidates. The results of a fit including
5
2

+, 3
2

+, and 1
2

− partial waves and the non-resonant model in the range 1.8 GeV≤
√
s <2.1 GeV are
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Figure 8.17: Intensities and phase differences from fit with 5
2

+, 32
+, 12

− waves: 1.80 GeV≤√
s <2.1 GeV. Figure (a) shows the intensities from each wave in the fit. The vertical dashed lines

emphasize the shape of the 1
2

− at
√
s ≈ 1.9 GeV. Figure (b) shows the phase difference between the

3
2

+ and 1
2

− waves.

shown in Figure 8.17. We immediately see that the intensity of the 1
2

− wave at 2.0 GeV observed in
Figure 8.15(a) has been replaced by the 5

2

+ wave. The shape of the 1
2

− intensity at
√
s =1.9 GeV

remains. The shape of the 3
2

+ intensity is largely unchanged. Most importantly, the addition of the
third wave has not greatly affected the shape of the phase difference between the 3

2

+ and 1
2

− waves
in the region where the 1

2

− shows strength (1.85 GeV≤
√
s <1.94 GeV).

Shown in Figure 8.17 are the results of fits with the 5
2

−, 3
2

+, and 1
2

− partial waves. In this fit,
the 1

2

− partial wave displays a large contribution in the
√
s range 1.8 GeV to 2.0 GeV. We see that

the 3
2

+ contribution has bee greatly reduced for
√
s > 1.9 GeV. In the range where the 3

2

+ and 1
2

−

intensities overlap, we see phase motion (Figure 8.17(b)) similar to that from previous fits.
We display the results of the fit with the 7

2

+, 3
2

+, and 1
2

− partial waves in this region in Figure
8.19. We find that the 1

2

− again shows a non-zero intensity at
√
s ≈1.9 GeV. The 3

2

+ wave shows a
smooth intensity in the large

√
s range 1.8 GeV to 2.0 GeV, though its peak is now at roughly the

same
√
s value as that of the 1

2

− wave. Inspection of the phase difference between the 3
2

+ and 1
2

−
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Figure 8.18: Intensities and phase differences from fit with 5
2

−, 32
+, 12

− waves: 1.80 GeV≤√
s <2.1 GeV. Figure (a) shows the intensities from each wave in the fit. Figure (b) shows the

phase difference between the 3
2

+ and 1
2

− waves. The vertical dashed lines show the region of overlap
between 3

2

+ and 1
2

− intensities.
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Figure 8.19: Intensities and phase differences from fit with 7
2

+, 32
+, 12

− waves: 1.80 GeV≤√
s <2.1 GeV. Figure (a) shows the intensities from each wave in the fit. Figure (b) shows the

phase difference between the 3
2

+ and 1
2

− waves.

waves in this region shows that the general trend displayed in the previous two fits is altered by the
addition of the 7

2

+ wave. For
√
s >1.87 GeV, the phase difference is relatively flat, as we expect for

two Breit-Wigner resonances characterized by the same mass and width values. Once again, because
of the possibility of multiple 3

2

+ resonances, we cannot use the Breit-Wigner description to interpret
these phase differences.

In summary, the contributions from 3
2

+ and 1
2

− partial waves in the region 1.8 GeV≤
√
s <2.0 GeV

are difficult to observe conclusively. Both waves show sizable and consistent intensities in this re-
gion when fit with another wave. By constraining the multipole coupling of the 3

2

+ partial wave
and finding that its intensity in this region is greatly decreased, we ascertain that the 3

2

+ partial
wave does not describe a single state in this region; however, we cannot rule out the possibility of
multiple resonances. The PDG lists one such state in this region, the P13(1900) (two-star rating),
and the Constituent Quark Model predicts three states at 1870 MeV, 1910 MeV, and 1950 MeV. By
investigating the presence of the 1

2

− partial wave in both two- and three-wave fits, we have shown
that in all fit schemes, it displays appreciable intensity in the region 1.88 GeV≤

√
s <1.95 GeV.

We have observed some interesting motion in the phase difference between the 3
2

+ and 1
2

− partial
waves in this region, and shown that the motion is smooth and robust in reliable fits. The PDG lists
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Figure 8.20: Shown above are comparisons of the total cross section (black) and projections of the
alternate non-resonant model (red) and its component production mechanisms. Notice that this
model has a very different contribution at low

√
s than the previous non-resonant model.

the S11(2090) state as the only 1
2

− state observed near this region, although the Constituent Quark
Model predicts a state at 1.945 GeV. Because multiple 3

2

+ states may exist in this energy range, the
phase motion cannot be studied with the Breit-Wigner phase difference from eq. (8.10). As such,
we comment only that the observed phase motion is smooth, and that this warrants further study
of these partial waves’ contributions as more data becomes available.

8.7 Alternate t-channel Model

To investigate any systematic effects associated with our non-resonant model, we have tested the
results of §8.5 with a second non-resonant mdoel. For this model, we used only the t-channel K
and K∗(892) exchange diagrams, repeating the procedure described in §8.2. The 1

2

−
s-channel

wave was again used in
√
s bins in the range 1.62 GeV to 1.68 GeV. Figure 8.20 shows this new

non-resonant model’s contribution to the total cross section as a function of
√
s. Exclusion of the

K1(1270) exchange diagram in this model yields a very different non-resonant contribution in the
near-threshold bins than our primary non-resonant model.

With the alternate non-resonant model, we once again performed the three-wave fit described in
§8.5.2. Figure 8.21 shows the results of this fit. We see that the intensity profile of the three s-channel
waves has not been altered greatly by the alternate non-resonant model. The phase differences for
all three two-wave combinations are very similar to those from the fit with the original non-resonant
model, however Minuit errors on the phases are larger than in the previous fit. We thus consider
our results to be robust againt variations in the non-resonant model.

8.8 Conclusions and Outlook

In this chapter, we have presented evidence for the contribution of several N∗ states to the γp →
K+Λ reaction. In the near-threshold region (

√
s <1.8 GeV), we have found evidence of the

previously-observed S11(1650), P13(1720), and F15(1680) states. Each of these states has a four-
star existence rating as listed by the PDG. The PDG lists the S11(1650) coupling to K+Λ as a
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Figure 8.21: Shown above are the intensities (a) and phase differences (b-d) from the three-wave fit
with alternate non-resonant model. In plots of phase differences, the vertical dashed lines indcate√
s regions considered in the previous fit. Dashed red curves indicate the theoretical phase motion

given by PDG average values.
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three-star phenomenon. The P13(1720) and F15(1680) couplings are both given two-star ratings.
We further comment that our fit including these three partial waves does not provide a full descrip-
tion of the data in this

√
s region. Thus, we cannot rule out further states such as the D15(1675)

and D13(1700).
In the

√
s region from 1.8 GeV to 2.0 GeV, we have found evidence for the existence of an S11

state at approximately 1.92 GeV. We ahve shown that the strength of this partial wave displays
appreciable intensity in the range 1.85 GeV≤

√
s <1.95 GeV in all two- and three-wave fits. We

have also shown that the phase motion between this partial wave and the 3
2

+ partial wave displays
interesting shape in this region. This evidence is encouraging given the Quark Model prediction of
an S11 state with mass of 1945 MeV. Previous experimental evidence for the S11 state in this region
is dubious; the closest observed state is the one-star-rated S11(2090). Our investigation in this region
also suggests the existence of multiple 3

2

+ states in the 1.8 GeV≤
√
s <1.95 GeV range. The PDG

lists only one such state, the two-star P13(1900), whereas Quark Model calculations predict states
at 1870, 1910, and 1950 MeV. Though the evidence for the S11 and P13 states presented in this
chapter is not fully conclusive, it strongly suggests the presence of these states and warrants further
study as more data becomes available.

Our technique for consistently combining results from different experiments into a signle partial
wave analysis has proven useful. In the near future, several experiments will add previously unob-
served quantities to our characterization of the γp→ K+Λ reaction. Presently, Craig Patterson and
David Ireland of Glasgow University are analyzing the photoproduction of the K+Λ system using
the linear photon polarization data of the CLAS g8b dataset. This analysis will yield the measure-
ments of Ox and Oz, the linear double-polarization observables. In late 2007, CLAS Collaboration
performed the FROST (FROzen Spin Target) experiment. This experiment called for a linearly-
polarized photon beam incident on a polarized hydorgen target and will allow measurement of a
large number of the polarization observables which characterize this reaction. Our method allows
for easy integration of these experiments’ results as they become available. These added polarization
measurements will provide a much more complete understanding of the γp → K+Λ reaction and
add analyzing power to future partial analyses of this channel.
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