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Note: See S. U. Chung, et al., Partial wave analysis in K-matrix formalism, Ann.

der Physik 4:404,(1995).
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What is the K-matrix

In Partial wave analysis (PWA), resonances are often parameterized
as Breit-Wigners.

BW (m) =
m0Γ0

m2
0 − m2 − imΓm

Γ(m) ∼
(m0

m

)

(

ρ(m)

ρ(m0)

)(

Fl(q)

Fl(q0)

)

Γ0

This approximation assumes an isolated resonance with a single
measured decay.
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What is the K-matrix

If there is more than one resonance in the same partial wave that
strongly overlap.

The Scalar Meson Sector (all couple to ππ final states).

f0(600) m = 400 − 1200 MeV Γ = 600 − 1000 MeV

f0(980) m = 980MeV Γ = 40 − 100 MeV

f0(1370) m = 1200 − 1500 MeV Γ = 200 − 500MeV

f0(1500) m = 1507MeV Γ = 109MeV

f0(1710) m = 1718MeV Γ = 137MeV

Broadly overlapping states.
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What is the K-matrix

Decays overlap as well:

f0(600) → ππ

f0(980) → ππ, KK̄

f0(1370) → ππ, KK̄ , ηη, 4π

f0(1500) → ππ, KK̄ , ηη, ηη′, 4π

f0(1710) → ππ, KK̄ , ηη

Lots of common decay modes.
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Formalism

Start with a scattering amplitude to connect an initial state to a final
state.

Sfi = < f | S | i >

The scattering operator, S , is unitary: SS† = I .
The transition operator, T , can be defined via

S = I + 2iT

This yields an expression:
(

T †
)−1

− T−1 = 2iI

(

T−1 + iI
)†

=
(

T−1 + iI
)

This yields a quantity which is Hermitian.
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Formalism

We define the K operator in terms of the Hermitian combination:

K−1 =
(

T−1 + iI
)

such that K is also Hermitian, K = K †.

Time reversal of S and T leads to K also being symmetric. Thus, the
K-operator, or the K-matrix can be chosen to be real and symmetric.
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Formalism

In terms of K , we have that:

T = K (I − iK )−1

We also have that S is

S = (I + iK ) (I − iK )−1
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Formalism

We define the K operator in terms of the Hermitian combination:

K−1 =
(

T−1 + iI
)

such that K is also Hermitian, K = K †.

Time reversal of S and T leads to K also being symmetric. Thus, the
K-operator, or the K-matrix can be chosen to be real and symmetric.
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Formalism

The K-matrix can be written as the sum of poles, mα, and decay channels,
i and j ,

Kij =
∑

α

gαigαj

(m2
α − m2)

√
ρiρj

.

The decay couplings are given as

g2
αi (m) = mαΓαi (m)

Γαi (m) = γ2
αiΓ

0
αρi (BF )2

and ρi is the phase space for the specified decay. This yields an matrix
whose dimensions is the number of decay modes.
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Formalism

If S = e2iδ, then T = e iδ sin δ and the S-wave cross section is given as

σ =

(

4π

q2
i

)

sin2 δ

The K-matrix can be shown to be:

K = tan δ
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Two-pole K-Matrix

Consider two resonances in the JPC = 0++ channel. We will consider
two cases:

f0(1200, Γ = 100) f0(1800, Γ = 100)

f0(1350, Γ = 300) f0(1500, Γ = 100)

In the first case, the resonances are relatively well isolated. In the
second, there is very strong overlap.
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Two-pole K-Matrix
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Breit-Wigner parameterization for the mass of the resonances.
(left) f0(1200, Γ = 100)&f0(1800, Γ = 100) and
(right) f0(1350, Γ = 300)&f0(1500, Γ = 100).
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Two-pole K-Matrix

Kij(m) =
m1Γ1(m)

m2
1 − m2

+
m2Γ2(m)

m2
2 − m2

Γi (m) = Γ0
i

(mi

m

)

(

q

qi

)

T = K (1 − iK )−1

T =
m1Γ1(m)

(m2
1 − m2) − im1Γ1(m) − i

(m2
1−m2)

(m2
2−m2)

m2Γ2(m)

+
m2Γ2(m)

(m2
2 − m2) − im2Γ2(m) − i

(m2
2−m2)

(m2
1−m2)

m1Γ1(m)
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Two-pole K-Matrix

For the case of m1 and m2 very far apart, the terms like

∼ i
(m2

1 − m2)

(m2
2 − m2)

m2Γ2(m)

are driven to zero far away from the main resonance. Thus, we get
that

T ≈ m1Γ1(m)

(m2
1 − m2) − im1Γ1(m)

+
m2Γ2(m)

(m2
2 − m2) − im2Γ2(m)

which looks like two Breit Wigner functions.
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Two-pole K-matrix
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Breit-Wigner parameterization (red) and K-Matrix (blue) for the mass
of the resonances, (left) f0(1200, Γ = 100)&f0(1800, Γ = 100) and
(right) f0(1350, Γ = 300)&f0(1500, Γ = 100).

16



Two-pole K-Matrix
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Argand diagrams for the two resonances, (left)
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One-pole, 2-decay K-Matrix

Consider the a0(980), a JPC = 0++ resonance that couples to both
ηπ and KK̄ .

The KK̄ occurs near the peak of the resonance, (987.3 MeV).

K11 =
γ2

1m0Γ0

m2
0 − m2

K22 =
γ2

2m0Γ0

m2
0 − m2

K12 =
γ1γ2m0Γ0

m2
0 − m2

with γ2
1 + γ2

2 = 1.
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One-pole, 2-decay K-Matrix

T =
m0Γ0

m2
0 − m2 − im0Γ0

(

ρ1γ
2
1 + ρ2γ

2
2

)

(

γ2
1 γ1γ2

γ1γ2 γ2
2

)
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One-pole, 2-decay K-Matrix
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K-matrix mass (0.980) and width (0.080) with γ2
ηπ = 0.8.
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One-pole, 2-decay K-Matrix
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K-matrix mass (0.980) and width (0.080) with γ2
ηπ = 0.5.
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One-pole, 2-decay K-Matrix
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K-matrix mass (0.980) and width (0.080) with γ2
ηπ = 0.2.

22



One-pole, 2-decay K-Matrix
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K-matrix mass (0.980) and width (0.300) with γ2
ηπ = 0.5.
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Crystal Barrel Analysis

The scalar mesons, f0(1370) and f0(1500) are strongly produced in p̄p

annihilation at rest. These can be searched for in three-pseudoscalar final
states:

p̄p → (ππ)π◦

p̄p → (ππ)η

p̄p → (ηη)π◦

p̄p → (KK̄ )π◦

p̄p → (ηη′)π◦

The CRYSTAL BARREL Collaboration (C. Amsler et al.), Coupled

channel analysis of antiproton proton annihilation into π◦π◦π◦, ηηπ◦ and

ηπ◦π◦, Phys. Lett. B355, 425, (1995).
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Crystal Barrel Analysis
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CLAS Photo-production Analysis

The reaction γp → pω from threshold up to
√

s ≈ 2.8 GeV. Partial wave
analysis carried out which includes both t-channel and s-channel processes.

p

γ

π, η

p

ω

p

ω

p

γ

N∗

The CLAS Collaboration (M. Williams et al.), Partial wave analysis of the

reaction γp → pω and the search for nucleon resonances, to be submitted
to Phys. Rev. D (2008).
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CLAS Photo-production Analysis
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2 Pole K-Matrix[F

Phase difference between the JP = (5
2)+ and the JP = (7

2)− waves. A
reasonable fit to the amplitude and phase differences is obtained by using
a two-k-matrix description for the (5

2)+ wave.
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Summary

The K-matrix formalism is derived for S-matrix scattering and
provides a method to build a unitary T-matrix.

The formalism accommodates multiple (overlapping) resonances in
the same partial wave.

The formalism allows one to couple data on different final states of
the same resonances. This is important when one is trying to measure
branching fractions.

While not mentioned, the extensions to broad daughter particles adds
complications to the formalism. In particular, the handling of
thresholds and phase-space factors become nebulous.
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