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OUTLINE

o Why

@ The Formalism.
@ Simple Examples.
@ Recent Analyses.

Note: See S. U. Chung, et al., Partial wave analysis in K-matrix formalism, Ann.
der Physik 4:404,(1995).



WHAT 1S THE K-MATRIX

@ In Partial wave analysis (PWA), resonances are often parameterized
as Breit-Wigners.
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@ This approximation assumes an isolated resonance with a single
measured decay.




WHAT 1S THE K-MATRIX

o If there is more than one resonance in the same partial wave that

strongly overlap.

@ The Scalar Meson Sector (all couple to 77 final states).

f3(600)
3(980)
(1370)
f5(1500)

(1710)

m = 400 — 1200 MeV T = 600 — 1000 MeV

m = 980 MeV

m = 1200 — 1500 MeV

m = 1507 MeV
m = 1718 MeV

@ Broadly overlapping states.

=40 — 100 MeV
=200 — 500MeV
=109 MeV
=137 MeV



WHAT 1S THE K-MATRIX

@ Decays overlap as well:

f(600) — 77

£(980) — mm KK
£(1370) — 7w, KK,nn, 4
f(1500) — 7w, KK,nm,nnt, 4n
f(1710) — 7w, KK,

o Lots of common decay modes.



FORMALISM

@ Start with a scattering amplitude to connect an initial state to a final
state.

S = <f‘5‘l'>

The scattering operator, S, is unitary: SST = 1.
@ The transition operator, T, can be defined via

S = I+2iT

@ This yields an expression:

(T’i‘)flfol = 2il
(Tr+in" = (T 44

@ This yields a quantity which is Hermitian.
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FORMALISM

@ We define the K operator in terms of the Hermitian combination:
Kt = (T 4+

such that K is also Hermitian, K = K.

@ Time reversal of S and T leads to K also being symmetric. Thus, the
K-operator, or the K-matrix can be chosen to be real and symmetric.



FORMALISM

@ In terms of K, we have that:

T = K(U—-iK)™*t

@ We also have that S is

S = (I+iK)(I—iK)™?



FORMALISM

@ We define the K operator in terms of the Hermitian combination:
Kt = (T h+il

such that K is also Hermitian, K = K.

@ Time reversal of S and T leads to K also being symmetric. Thus, the
K-operator, or the K-matrix can be chosen to be real and symmetric.



FORMALISM

The K-matrix can be written as the sum of poles, m,, and decay channels
i and j,

Bai8a;
Ky — N
’ Z (m3 — m?) \/pipj

The decay couplings are given as

gfi(m) = malai(m)
rru’(m) - (2ur9\ (BF)

and p; is the phase space for the specified decay. This yields an matrix
whose dimensions is the number of decay modes.
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FORMALISM

o If S = €% then T = e¥sind and the S-wave cross section is given as

4
o = (Z) sin? §
gi

The K-matrix can be shown to be:

K = tand
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TwWO-POLE K-MATRIX

@ Consider two resonances in the JP¢ = 01+ channel. We will consider
two cases:

f(1200,T = 100)  £(1800,T = 100)
f(1350,7 =300)  £(1500,T = 100)

@ In the first case, the resonances are relatively well isolated. In the
second, there is very strong overlap.
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TwWO-POLE K-MATRIX
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@ Breit-Wigner parameterization for the mass of the resonances.
(left) (1200, = 100)&17 (1800, = 100) and
(right) (1350, = 300)&1(1500, = 100).
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TwoO-POLE K-MATRIX

mil1(m)  mala(m)

Ki(m) =
i(m) m% — m?2 m% — m?2
. N AN
Fi(m) = T (m) (q;)
T = KA—iK)™!
T = mlrl(m)
- ] 22
(m? — m2) — imT1(m) — /E %_m2§m2r2(m)
i mgrg(m)
—m2
(m3 — m2) — imla(m) — /E 2 m2;m1r1(m)



TwWO-POLE K-MATRIX

o For the case of my and my very far apart, the terms like
(mi —m?)

~Y | ————
2 m2)

(m2 ~ mgl'g(m)

are driven to zero far away from the main resonance. Thus, we get
that

o mlrl(m) i m2r2(m)
(m3 — m2) —imT1(m) ~ (m3 — m?2) — imala(m)

which looks like two Breit Wigner functions.
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TWO-POLE K-MATRIX

0
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@ Breit-Wigner parameterization (red) and K-Matrix (blue) for the mass
of the resonances, (left) (1200, = 100)&f (1800, = 100) and
(right) f(1350, T = 300)&(1500, I = 100).
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TwWO-POLE K-MATRIX
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@ Breit-Wigner parameterization (red) and K-Matrix (blue) for the
Argand diagrams for the two resonances, (left)
(1200, = 100)& (1800, " = 100) and (right)
fo(1350, " = 300)& (1500, = 100).
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ONE-POLE, 2-DECAY K-MATRIX

o Consider the ap(980), a JP = 0" resonance that couples to both
nm and KK.

@ The KK occurs near the peak of the resonance, (987.3 MeV).

2
Ko - molo
0
2
K, — 2 molo
2 = 55—
mO m
K Y1y2molo
12 —5
mO m

with 72 + 43 = 1.
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ONE-POLE, 2-DECAY K-MATRIX

r _ molo < V3 ’7’172)

: 2
mg —m? —imolo (p17f + p273) \ M2 73
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ONE-POLE, 2-DECAY K-MATRIX
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K-matrix mass (0.980) and width (0.080) with 7 = 0.8.
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ONE-POLE, 2-DECAY K-MATRIX
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K-matrix mass (0.980) and width (0.080) with 7 = 0.5.
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ONE-POLE, 2-DECAY K-MATRIX
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K-matrix mass (0.980) and width (0.080) with 7 = 0.2.
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ONE-POLE, 2-DECAY K-MATRIX
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K-matrix mass (0.980) and width (0.300) with 7 = 0.5.
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CRYSTAL BARREL ANALYSIS

The scalar mesons, f,(1370) and f(1500) are strongly produced in pp
annihilation at rest. These can be searched for in three-pseudoscalar final
states:

pp — (7m)m’
pp — (mm)n
pp — (mm)n°
pp — (KK)r®
pp — (m/)m°

The CRYSTAL BARREL Collaboration (C. Amsler et al.), Coupled
channel analysis of antiproton proton annihilation into w°n°w°, nmmm° and

nr°n°, Phys. Lett. B355, 425, (1995).
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CRYSTAL BARREL ANALYSIS

GV’
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M = (1390 + 30)MeV ; T = (380 % 80)MeV

M = (1500 + 10)MeV
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CLAS PHOTO-PRODUCTION ANALYSIS

The reaction yp — pw from threshold up to /s &~ 2.8 GeV. Partial wave
analysis carried out which includes both t-channel and s-channel processes.

7T777 4

p P \p

The CLAS Collaboration (M. Williams et al.), Partial wave analysis of the

reaction yp — pw and the search for nucleon resonances, to be submitted
to Phys. Rev. D (2008).
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CLAS PHOTO-PRODUCTION ANALYSIS
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Phase difference between the J© = (3)* and the J” = (1)~ waves. A

reasonable fit to the amplitude and phase differences is obtained by using

a two-k-matrix description for the (327* wave.



SUMMARY

@ The K-matrix formalism is derived for S-matrix scattering and
provides a method to build a unitary T-matrix.

@ The formalism accommodates multiple (overlapping) resonances in
the same partial wave.

@ The formalism allows one to couple data on different final states of
the same resonances. This is important when one is trying to measure
branching fractions.

@ While not mentioned, the extensions to broad daughter particles adds
complications to the formalism. In particular, the handling of
thresholds and phase-space factors become nebulous.
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