

Analysis Plans for the GlueX Experiment

Curtis A. Meyer Carnegie Mellon University April 13, 2015

Outline

- The GlueX Experiment.
- Status and Timelines
- Exotic Hybrid Mesons.
- Reactions of Interest.
- Analyses.

12-GeV CEBAF – Photoproduction

Coherent Bremsstrahlung

04/13/15

The International Workshop on Partial Wave Analysis for Hadron Spectroscopy

The GlueX Experiment at Jefferson Lab

Physics in 2016

04/13/15

The International Workshop on Partial Wave Analysis for Hadron Spectroscopy

Upgraded Kaon Identification

In June 2014, GlueX was given four of the twelve BaBar DIRC boxes.

This will extends the range of reactions and improve the purity of the resulting event samples.

04/13/15

The International Workshop on Partial Wave Analysis fo

Global Particle Identification

Request 90% purity in the event sample. Request 95% purity in the event sample.

The baseline GlueX detector can provide pure kaonic event samples with good efficiency.

04/13/15

GLUE

GLUE

Global Particle Identification

Request 90% purity in the event sample. Request 95% purity in the event sample. Request 99% purity in the event sample.

The baseline GlueX detector can provide pure kaonic event samples with good efficiency. The DIRC will significantly enhance this capability.

04/13/15

The International Workshop on Partial Wave Analysis for Hadron Spectroscopy

GlueX Running

- GlueX took commissioning data Oct. to Dec. 2014.
- There is an on-going commissioning run now.
 - Beam energy is below 6-GeV.
 - Some linear polarization.
 - Hydrogen target.
- Commissioning run in Fall 2015.
 - 12-GeV electron beam.
 - Linearly polarized photons.
 - Software trigger tests.
- Physics Commissioning in Spring 2016.
 - Low-intensity running.
 - Full baseline detector.
 - Software trigger tests.
- Physics running in Fall 2016/ Spring 2017.
 - Move to higher intensity.
 - Implement software trigger
- Upgraded kaon identification in Fall 2017/Spring 2018.
 - High intensity running with full detector capabilities.

04/13/15

The International Workshop on Partial Wave Analysis for Hadron Spectroscopy

- Ran from late October until just before Christmas.
- All systems worked and all detectors recorded data simultaneously.
- Multiple triggers tested.
- 120TB of data collected, all data have since been processed multiple times.
- Calibration and alignment is in an advanced state.
- Hoped to complete calibrations using Spring'15 commissioning data.

04/13/15

GLUE

First beam, November 5, 2014

Targets installed on November 11, 2014

The International Workshop on Partial Wave Analysis

November 6, 2014

First π^0 in FCAL November 27, 2014

The International Workshop on Partial Wave Analysis for Hadron Spectroscopy

Identify two charged particles from a secondary vertex. A clear signal for the $K_S \rightarrow \pi^+ \pi^-$

Identify two charged particles from a secondary vertex. A clear signal for the $~\Lambda \to p \pi^-$

Quantum Chromo Dynamics

QCD describes the interactions of quarks and gluons and should predict the spectrum of bound-state baryons (qqq) and mesons ($q\overline{q}$).

There should also be mesons in which the gluonic field contributes directly to the J^{PC} quantum numbers of the states --- hybrid mesons. Some are expected to have ``exotic'' quantum numbers.

Light-quark Mesons (u,d,s)

Lattice QCD

Lattice QCD

04/13/15

QCD Exotics

Lattice QCD suggests 5 nonets of mesons with exotic quantum number:

1 nonet of 0⁺⁻ exotic mesons
2 nonets of 1⁻⁺ exotic mesons
2 nonets of 2⁺⁻ exotic mesons

Experimental evidence exists for π_1 states.

Possible Decay Modes

 $π_1 → πρ, πb_1, πf_1, πη', ηa_1$ $η_1 → ηf_2, a_2 π, ηf_1, ηη', π(1300)π, a_1 π,$ $η_1' → K^*K, K_1(1270)K, K_1(1270)K, ηη'$

 $b_2 \rightarrow \omega \pi, a_2 \pi, \rho \eta, f_1 \rho, a_1 \pi, h_1 \pi, b_1 \eta$ $h_2 \rightarrow \rho \pi, b_1 \pi, \omega \eta, f_1 \omega$ $h'_2 \rightarrow K_1(1270)K, K_1(1270)K, K_2^*K, \phi \eta, f_1 \phi$

$$b_0 \rightarrow \pi$$
(1300)π , $h_1 \pi$, $f_1 \rho$, $b_1 \eta$
 $h_0 \rightarrow b_1 \pi$, $h_1 \eta$
 $h'_0 \rightarrow K_1$ (1270)K, K(1460)K, $h_1 \eta$

Early Reach With Statistics Hard

Hybrid kaons do not have exotic QN's

Models suggest narrower states are in the spin-1 and spin-2 nonets, while the spin-0 nonets are broad.

Key First Measurements

Demonstrate that we understand the detector and the reconstruction software.

 $\gamma p \to (\eta, \omega, \eta') p$

Measure cross sections and polarization observables. $\frac{d\sigma}{d\Omega} \sum \rho_{ij}^{0,1,2}$ Meson ``two body" final states. $\gamma p \rightarrow (\pi, \eta, \omega, \eta') \pi p$

The $\eta\pi$ and $\eta'\pi$ reactions are of high interest.

04/13/15

GlueX Physics Analysis

GlueX is ready to do physics and several analyses are being worked out using the full suite of GlueX/Hall-D software and data from largescale data challenges.

Physics reactions of interest:

tial exotic hybrid arches	Strange Baryons
$\gamma p \to \eta \pi(n, p)$ $\gamma p \to \eta' \pi(n, p)$ $\gamma p \to \rho \pi(n, p)$ $\gamma p \to \omega \pi(n, p)$ $p \to \omega \pi \pi(n, p)$ $p \to \eta \pi \pi(n, p)$	$\gamma p \to K^{-} \Lambda$ $\gamma p \to K\Sigma$ $\gamma p \to KK\Xi$
$p \to \eta \pi \pi(n, p)$	
	$\gamma p \to \eta \pi(n, p)$ $\gamma p \to \eta' \pi(n, p)$ $\gamma p \to \rho \pi(n, p)$ $\gamma p \to \omega \pi(n, p)$ $p \to \omega \pi \pi(n, p)$ $p \to \eta \pi \pi(n, p)$

Interesting for Exotic Searches

 $\gamma p \to \pi \pi \pi p, \pi \pi \pi n$ $X \to \rho \pi, f_2 \pi, \pi \pi \pi \dots$

Lots of challenges in this reaction. No signal in CLAS at 5GeV for recoil neutron.

 $\gamma p \to \eta \pi \pi p, \eta \pi \pi n$ $X \to \rho \eta, f_2 \eta, a_2 \pi, \eta \pi \pi \dots$

Couples to a number of exotic hybrids through several decay paths. In principle, these can couple to π_1, η_1, b_2, h_2

These channels should provide a framework to test new amplitudes developed for these.

Amplitude Analysis

Describe the process of producing a particular final state as a set of possible amplitudes : ${\cal A}_j(\gamma p o p \pi^+ \pi^- \pi^0)$

E.g.
$$\mathcal{A}_1(\gamma p \to pX_i \to p\rho^+\pi^- \to p\pi^+\pi^-\pi^0)$$

Build a total amplitude by coherently summing all the individual amplitudes. This total amplitude yields a probability that the given sum describes a particular event ``k''.

 \mathcal{N} is a normalization factor and a_j are complex coefficients.

$$P(e_k) = \frac{1}{\mathcal{N}} |\sum_j a_j \mathcal{A}_j(e_k)|^2$$

Form the likelihood $\ln \mathcal{L} = \sum_{k} \ln P(e_k)$ and then minimize the natural log of it with respect to the a_j . This is a CPU-intensive problem that appears to scale well on graphical processor units (**GPUs**). To do this requires the four-vectors of all events plus a comparable Monte Carlo data sample to do the normalization.

Amplitude Analysis

- We generally try to find the smallest set of a_j to describe the data.
- This is done summing over all of the experimental and simulated data.
- We look at the amplitudes described by each of the partial waves and look for intensity and phase motion between them.

Observables

- What if we take a very large number of A_j s, but do not attribute meaning to the individual ones. Instead, we try to extract the complex amplitude. $A_{tot} = \sum_{j} a_j A_j$
- It is easier to compare a model to an observable than to the original data.
- With a good model, one can then fit the data directly.

Example of \omega Photo Production

Total amplitude is an excellent description of all the data in all of its dimensions:

$$\mathcal{M}_{m_i,m_\gamma,m_f,m_\omega}(\vec{x},\vec{\alpha}) \approx \sum_{j=\frac{1}{2}}^{\frac{21}{2}} \sum_{P=\pm} \mathcal{A}_{m_i,m_\gamma,m_f,m_\omega}^{J^P}(\vec{x},\vec{\alpha})$$

However, the fit coefficients α_i may have no physics meaning, they are just fitting parameters.

Because the amplitude does describe the data, it can be used to project observables.

The method handles both circularly and linearly polarized photons on an event-by-event basis.

Example of \omega Photo Production

 The method also does detector acceptance automatically. Use the fit parameters to determine the intensity of a given event.

$$I_{i} = \sum_{m_{i}, m_{\gamma}, m_{f}} \left| \sum_{m_{\omega}} \mathcal{M}_{m_{i}, m_{\gamma}, m_{f}, m_{\omega}}(\vec{x}, \vec{\alpha}) \right|^{2}$$

• The acceptance for a set of events near some event, $ec{x}$

is $Acc(\vec{x}) = \frac{\sum_{i=1}^{N_{acc}} I_i}{\sum_{j=1}^{N_{th}} I_j}$

Sum over accepted MC events

Sum over generated MC events

Amplitudes Lead to Observables

- What are the observables that can be measured in a reaction?
- A_{tot} has indices associated with initial and final spin states. $\frac{d\sigma}{d\Omega} \propto A_{tot}A_{tot}^*$

 - Spin Observables. Sum over A's with flipped spin indices.
 - Moments

What are the Observables?

- Can we define observables that can be extracted independent of a partial-wave interpretation of a particular reaction?
- With such observables, many (complicated) models of the data can be tested.
- A smaller subsets of vetted models can then be used to directly confront the data.

Summary

- GlueX had a very successful commissioning run and is looking forward to its first physics data soon.
- Analysis and Amplitude Analysis issues will quickly move into the forefront of our experimental efforts.
- The techniques discussed here, and being developed now will be crucial to our ultimate success.
- Are there other observables beyond amplitude analyses results?