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Abstract

Lattice QCD with Nf = 2 flavours of sea quark is used to explore the spectrum and
decay of scalar mesons. We find evidence that the lightest non-singlet scalar meson
(a0) has a mass of 1.01(4) GeV. We determine from the lattice the coupling strength
to KK and πη. We compute the leptonic decay constant of the lightest non-singlet
scalar meson. We discuss the impact of these lattice results on the interpretation of the
a0(980) state. We also discuss K∗

0 states.



1 Introduction

The scalar mesons known experimentally do not fit into a tidy pattern, as found for vector or

axial mesons, for example. Because the scalar mesons have S-wave decays to light two-body

states (two pseudoscalar mesons), then the impact of these two-body channels on the scalar

meson can be sizeable. Thus the scalar mesons may have q̄q̄qq as well as q̄q components. For

example, there are two a0 mesons, a0(980) and a0(1450), known [1]. The a0(980) meson is

closely associated with the K̄K threshold and it has been suggested that this is a molecular

state. This is can be explored using lattice techniques. A further complication is that the

flavour singlet scalar mesons can mix with scalar glueballs, although here we restrict our

investigation to the flavour non-singlet scalar mesons from lattice QCD.

There has been a long history of studying the scalar non-singlet mesons on the lattice.

These states tend to have a poorer signal to noise ratio than the S-wave mesons [2] such as

the ρ and π, hence are less commonly studied. Much of the early literature on light P-wave

mesons focussed on designing good interpolating operators to create the mesons [2, 3].

The quenched studies of the a0 were complicated by the discovery of a ghost state that

made the correlator for the a0 particle, which should be positive definite in a unitary quan-

tum field theory, go negative [4]. If this effect was not taken into account then the chiral

extrapolation of correlators was unreliable. Modern studies of this state such as those by

Burch et al. [5] correct for the effect of the missing contribution to the 0++ correlator from the

η′ meson. Prelovsek [6] has also studied the ghost state in the quenched a0 correlator using

staggered fermions, by taking into account “taste” symmetry breaking, which is a deviant

feature of the staggered fermion formulation.

The non-singlet scalar mass is an input into the study of mixing with glueballs in the

singlet sector by Weingarten and Lee [7]. The ghost state was not taken into account and

this led to problems with the chiral extrapolation of the non-singlet 0++ meson masses. This

mixing has also been discussed [8, 9] using unquenched lattices which avoids this problem.

Alford and Jaffe [10] used quenched QCD with q2q2 operators relevant to 0++ mesons.

Their study claimed to see evidence for bound states in the q2q2 channel relevant to 0++

states. The work of Alford and Jaffe [10] can be criticised for not taking into account the

quenched ghost in the a0 correlator. Only a subset of the correlators required for the singlet

channel were computed. This is, perhaps, consistent in quenched QCD but clearly important

physics is omitted.
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Group Method ma0
GeV

Bardeen at al. [4] quenched 1.34(9)

Hart et al. [9] nf = 2, partially quenched, 1.0(2)

Prelovsek et al. [12] nf = 2, unquenched, 1.58(34)

Prelovsek et al. [12] partially quenched 1.51(19)

Burch et al. [5] quenched ∼ 1.45

Table 1: Some results for the mass of the a0 meson from quenched and partially quenched QCD that

include the effect of the ghost state [4].

The scalar collaboration are starting to use lattice QCD techniques to study the κ parti-

cle [11].

Prelovsek et al. [12] extended the work of Bardeen et al. [4] on the effect of the ghost state

in the a0 channel to the partially quenched theory. By restricting lattice study to valence

quarks heavier than the sea-quarks, Hart et al. [9] were able to extrapolate to light quarks

with no ghost contributions, obtaining an estimate for the a0 mass of 1.0(2) GeV.

In table 1 we collect together some recent numbers for the mass of the a0 mass from some

modern lattice calculations that take into account the ghost term. None of the calculations

in table 1 had complete control over all systematic errors, such as finite size effects or the

continuum limit, even within quenched QCD. The results for the lightest 0++ meson are

mostly around 1.5 GeV. As we note above, the a0 decays via the strong interaction, so a

quenched QCD calculation may give a poor estimate of the particle mass.

The MILC collaboration reported evidence for a0 decay on the lattice in an unquenched

lattice QCD calculation with 2 + 1 flavours of improved staggered fermions with a lattice

spacing of 0.12 fm [13]. In MILC’s first paper they found the a0 mass to be significantly lower

than the mass of the b1 and a1 mesons. This was different behaviour from the quenched study

with the same parameters. MILC [13] found that the mass of the a0 meson seemed to track

the sum of the π and η masses when the mass was below the threshold for the decay where

the mass of the η was estimated using the Gell-Mann-Okubo formula.

As the MILC collaboration [14] ran unquenched calculations with lighter sea quarks they

found that the lightest state in the a0 channel lay below the πη threshold. Using independent

techniques on a subset of the configurations from MILC, Gregory et al. [15] also found that

the lightest state in the a0 channel was below the πη threshold. Prelovsek [6] has studied

a0 decay using staggered chiral perturbation theory, concluding that taste violations in the
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staggered fermion formalism allow a small amplitude for the decay of the a0 state to two

pions. The decay a0 → ππ is forbidden in the real world because of G parity.

Since the current state of lattice investigation of scalar mesons is incomplete, more work

is needed. In order to make a start in establishing the nature of scalar mesons from first

principle in QCD, we address here the flavour non-singlet scalar mesons. As is well known,

lattice QCD in the quenched approximation is not a consistent theory and this manifests itself

as ghost contributions to the scalar meson propagation - arising from the spurious low-lying

threshold in the πη two-body channel. We use here Nf = 2 dynamical gauge configurations

so that we have a consistent field theory. The physical case, however, also has another light

quark (the s quark) and has lighter u and d quarks than we are able to use on a lattice. Thus

some extrapolation will be needed to obtain consequences for the physical spectrum.

As we approach the limit of physical light quark masses, the scalar mesons become un-

stable: they are resonances. On dynamical lattices these decay channels are open. Thus we

need to have methods to cope with unstable particles on a lattice. The study of hadronic

decays from the lattice is not straightforward - see ref. [16]. It is possible, however, to evalu-

ate the appropriate hadronic matrix element from a lattice if the transition is approximately

on-shell. This allows us to estimate decay widths, provided that the underlying coupling is

relatively insensitive to the quark masses. We follow methods generically similar to those

used by us to study ρ decay [17] and hybrid meson decay [18].

As well as the hadronic decay, one can also define a decay constant analogously to that

defined for the weak decay of pseudoscalar mesons. We discuss the relevance of this and the

determination from the lattice of the scalar decay constant.

2 Spectrum

As a by-product of our study of hybrid mesons, we have accurate lattice measurements of

the a0, b1 and a1 mesons from clover-improved lattices with Nf = 2 degenerate sea-quarks

- see Table 2 for details. Each of these mesons is unstable and in the Nf = 2 world with

two degenerate quarks they have two-body decays to πη2, πω and πρ respectively. Here η2 is

flavour singlet, (ūu+ d̄d)/
√

2, so it is more like the η′ than the η meson. Indeed estimates [19]

of its mass from a mixture of lattice results and experiment suggest that it is near 0.86 GeV.

Thus, for light quarks with Nf = 2, the open decay channel is heavier for the a0 meson than

for the axial mesons.
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This is in contrast to quenched QCD where the flavour singlet pseudoscalar has the same

mass as the pion, but an anomalous coupling. Moreover, quenched QCD allows a contribution

(hairpin diagram) to the a0 correlator from this two-body channel which gives significant

unphysical effects.

Since the decay channels open to the P-wave mesons are quite similar, we propose to

focus on the mass differences between them since this will reduce lattice artifacts. The a1

meson is very wide, experimentally, so that it is not a good point of comparison with lattice

results. The b1 meson, however is relatively narrow and should be well reproduced on a

lattice. Indeed in ref. [18], we were able to measure from the lattice the decay amplitude for

the S-wave decay b1 → πω, obtaining agreement with experiment.

We show our results from two state fits to a 2 × 3 matrix of correlators (2 × 2 for U350

and C390) using t-range 3-12 (3-10 for C390 and C410) in Table 2.

We find that the a0 correlator can have big fluctuations which are apparent at large t,

most noticeably for U350 where the zero-momentum effective mass decreases at large t. The

origin of these fluctuations is mixing between the a0 and the pion induced by regions of

odd-parity in the vacuum - presumably associated with instantons. See [20] for a discussion

of a0 − π mixing in lattice QCD and in the instanton liquid model. With sufficient statistics

these odd-parity fluctuations average to zero. Using stochastic methods (all-to-all) helps to

reduce these fluctuations as we reported before [18]. Using non-zero momentum can also

act as a useful cross-check. This suggests that for U350 with zero momentum, we should

use a t-range from 3-8 to reduce these fluctuation effects and retain consistency with our

results from momentum 2πn/L where n = (1, 0, 0) and (1, 1, 0). The value for U350 quoted

in Table 2 is from this analysis.

For the b1 meson, at non-zero momentum there can be mixing with the ρ meson (for

some spin states). For the non-local (fuzzed) operators there will also be an admixture of

L = 2 (from distortion due to Lorentz boost) and possibly some mixing of opposite C (unless

the momentum phase factors are applied symmetrically to the fuzzed operator). For these

reasons we rely on zero momentum for the b1 meson.

Because of the difficulties in extrapolating to light quarks using lattice results with a

range of different lattice spacings, we focus on mass differences. Here we concentrate on the

difference m(b1)−m(a0) which is plotted against the quark mass in fig. 1 using r0 determined

on the lattices to create a dimensionless comparison.

The point in fig. 1 labelled a0(980) assumes that the relevant a0 meson is the lightest with

mass 984.7 MeV. The next heaviest with mass 1474 MeV is less well established and would
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Code no. κ m(π)r0 L/r0 am(π) am(ρ) am(b1) am(a1) am(a0)

C410 237 0.1410 1.29 5.3 0.427(1) 0.734(4) 1.17(3) 1.15(2) 1.03(4)

C390 648 0.1390 1.93 6.0 0.729(1) 0.969(2) 1.48(4) 1.39(5) 1.33(8)

U355 200 0.1355 1.47 3.2 0.292(2) 0.491(7) 0.77(2) 0.72(2) 0.64(4)

U350 151 0.1350 1.93 3.4 0.405(5) 0.579(8) 0.87(2) 0.88(2) 0.75(3)

Table 2: Lattice gauge configurations U355 and U350 from UKQCD [21] and C390 and C410 from CP-

PACS [22] are used. These have Nf = 2 flavours of sea quark and we use valence quarks of the same mass

as the sea quarks. Results for P-wave mesons are from the methods of ref. [18] for U355 and C410 and from

conventional methods for U350 (with 4 time sources) and C390.

correspond to a point (-0.66) far below the x-axis. Our lattice results for the mass difference

show no significant dependence on the quark mass, and averaging our lattice results gives

an estimate (using r0 = 0.5fm) of m(b1) − m(a0) = 221(40) MeV. There is an additional

systematic error coming from the assumption of a constant difference as the quark mass is

decreased, which we are unable to quantify.

As discussed above, we do not expect the two-body thresholds to play a significant role

in our Nf = 2 spectra. We do, however, measure these decay transitions to have a more

complete analysis.

3 Hadronic decays

For the case of Nf = 2 degenerate quarks, the matrix elements for decay transitions of a

non-singlet scalar meson to two pseudo-scalar mesons are given in Table 3, where the quark

diagrams are illustrated in fig. 2.

Only one case, a0 → πη2, is allowed staying strictly within Nf = 2 with valence quarks

of the same properties as sea quarks (here η2 is the flavour singlet pseudoscalar for Nf = 2,

namely (ūu + d̄d)/
√

2). This case involves a disconnected diagram (D) and is not directly

relevant to phenomenology. In the limit that the sea-quark is much heavier than the u and d

quarks, we expected the neglect of s quarks in the sea to be a good approximation. In that

case, decays such as K∗

0 → Kπ can be studied from diagram T . For the physical case with s

quarks of some 80 MeV, a0 → πη8 and a0 → K̄K may also be determined adequately from

Nf = 2 lattice study of diagram T .
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S P1 P2 T D

a0 π η2 21/2 −21/2

a0 K K̄ 1 0

a0 π ηss 0 −1

a0 π η8 (2/3)1/2 0

K∗ K+ π0 2−1/2 0

K∗ K0 π+ 1 0

K∗ K η2 21/2 −21/2

K∗ K ηss 1 −1

Table 3: Amplitudes of transitions from flavour non-singlet scalar meson S to P1P2 with coefficients of the

triangle quark diagram (T ) and the disconnected quark diagram (D). Only the top line is allowed if Nf = 2

strictly. The other lines are allowed when a valence s quark is added. We define η2 as (ūu + d̄d)/
√

2, ηss as

s̄s and η8 as (ūu + d̄d − 2s̄s)/
√

6. We have assumed that the disconnected contributions to the decay to η8

cancel.

With this in mind, we first evaluate the lattice transition amplitude corresponding to the

connected triangle diagram T . This is a partially-quenched evaluation but we are able to use

similar methods to those used to study ρ decay [17] and hybrid meson decay [18].

The lattice results for the connected (T ) contribution to a generic scalar meson transition

to two pseudoscalar mesons are presented as the normalised lattice ratio

R(t) =
(S → P1P2)

√

(S → S)(P1 → P1)(P2 → P2)

where the three-point correlator is constructed from propagators as illustrated for T in fig. 2.

Each two and three-point correlator is taken at the same time separation t.

Since the a0 mass is approximately twice the pseudoscalar mass (see Table 2) at zero

momentum, we expect the ratio R(t) to be approximately linear with slope xa versus t where

x is the lattice transition amplitude. This is indeed observed, as shown in fig. 3.

We first checked that using different operators to create mesons gave essentially the same

ratio R(t). We use local or fuzzed operators for each of the three particles involved and in

each case the ratio is the same within errors for the t region of interest for the case we studied

in most detail, namely with all momenta zero.

The most reliable determination of the coupling constant comes from using meson op-

erators which minimise excited state contributions. We use fuzzing with separations of 3a
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(C410) or 5a (U355) to achieve this. We extract the slope xa by taking finite differences and

relate this lattice transition amplitude to the continuum coupling via Fermi’s Golden Rule.

Then, to compare different lattice data sets, we extract the effective coupling using

g2 =
1

π
(xa)2(L/a)3 aE(P1)E(P2)

E(P1) + E(P2)

Here the decay width Γ is, for a process with amplitude T , given by Γ/k = g2, where k is

the centre of mass momentum of the decay products.

As a first check of this approach, we evaluated the effective coupling from lattices that

differ only in spatial size (labelled U395, see ref. [18] for more details) and we found excellent

agreement when the spatial volume was changed by a factor of 2.4., as shown in fig. 3.

The coupling extracted, as above, from our higher statistics data-sets is shown in fig. 4.

This shows a coupling g ≈ 1 which has implications which we discuss later. The consistency

between the two determinations (C410 and U355) which have different spatial volumes and

different lattice spacings is satisfactory. As an overall summary we quote a coupling g =

1.0(2).

We also have available some results (from 40 gauge configurations for U355 and for 50 for

C410) for transitions involving non-zero momentum, especially S(1) → P1(0) + P2(1) where

the momentum (in units of 2π/L) is given in the brackets. These results used the methods of

ref. [17, 18] respectively. The normalised lattice ratio R(t) is shown in fig. 5 and the coupling

extracted assuming the formulae above is included for C410 (where we used an optimum

method to extract ground state contributions) in fig. 4. As discussed in ref. [17], the decay

in flight poses some problems of normalisation (since it is not quite equivalent to a centre

of mass decay with relative momentum π/L), so must have a somewhat bigger systematic

error to compensate. Nevertheless, we see an approximate agreement of the lattice transition

amplitude xa and of the coupling g when the decay has momentum release of zero and of

π/L. This is to be expected for an S-wave decay where the effective matrix element should

be independent of momentum.

4 Leptonic decay constant

The decay constants of non-singlet 0++ mesons are not routinely calculated using lattice

QCD, although they are of interest for a number of reasons. The value of the decay constant,

which is basically the amplitude to find a quark and anti-quark at the origin, can help
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distinguish between different quark content of the meson [23, 24]. For instance, if the a0 was

a KK molecule, then the decay constant would be small relative to the value of the pion

decay constant. The decay constant of the a0 meson is also a theoretical input to study of B

meson decays and of τ decays to final states that include an a0 [25, 26, 27, 28].

Diehl and Hiller discuss the prospects of determining the value of the decay constant of

the a0 mesons from experiment [25]. As we explain below, a direct measurement of the decay

a0 constant coupled with computation of a QCD matrix element could be used to compute

the mass difference of the up and down quarks.

The decay constant of the light 0+ meson can be defined by equation 1.

〈0 | V ab
µ |a0〉 = ipµga0

(1)

where V ab
µ is the vector current for quark flavours a and b.

The conservation of the vector current is used to relate the operator in equation 1 to the

scalar current.

∂µ(qaγµq
b) = i(ma − mb)qaqb (2)

for light quarks with flavour a and b. This motivates a definition of the decay constant such

as

i〈0 | quqd | a0〉 = f̂a0
m2

a0
(3)

To compare the size of the decay constant of the a0 to that of the K∗(1430) meson,

Maltman [23] defined a new decay constant with a slightly different normalisation.

The direct use of equation 2 is impossible in a lattice calculation with two degenerate

flavours of sea quarks. The vector current does not couple to the scalar meson in this case.

The decay constant in equation 3 is non-zero in an unquenched lattice QCD calculation with

two flavours of sea quarks.

There is another reason for splitting the definition of the 0++ meson decay constant into

a quark mass factor and QCD matrix element. Currently there is a disagreement between

the value of the strange quark from unquenched lattice QCD calculations that use different

types of fermion for the light quarks [29]. Some recent papers [30, 31, 32] report summaries

of the values for the strange quark mass published around time of the lattice 2005 conference,

using different formulations of lattice QCD. Lattice QCD calculations are only just starting

to report values for the differences between the masses of the up and down quarks [33].

Hence, we prefer to quote separately our measured matrix element rather than introduce
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explicit factors of the quark mass. So, it is more natural to define the decay constant using

equation 4.

〈0 | qq|a0〉 = ma0
fa0

(4)

The relation between fa0
and ga0

is via

ga0
=

md − mu

ma0

fa0
(5)

The explicit factor of the quark masses (md−mu) in equation 5 is the reason that Narison [34]

computes the value of ga0
to be between 1.3 and 1.6 MeV.

The matrix element in equation 4 is extracted from the amplitudes in the fits to the

correlators (see [35] for example). The raw numbers from the lattice calculation need renor-

malisation. To convert the lattice number to the MS scheme we use tadpole improved

perturbation theory to one loop order [36]. The renormalisation factor for a scalar current,

at the scale µ = 1/a, is

ZS(µ = 1/a) = u0 (1 − αsSc) (6)

where u0 is the fourth root of the plaquette, and the constant Sc is 1.002 for the Wilson

gauge action [37] and 0.5031 for the Iwasaki gauge action [38, 39].

To remove O(a) terms we also need to use improvement coefficients. We define the

renormalisation ẐS that includes the improvement factor

ẐS = ZS (1 + bSmq) (7)

where mq is the mass of the light quark. We used the one loop expression for bS.

bS = (1 + αsbsc) (8)

where the constant bsc is 1.3722 for the Wilson action [40], and 1.2800 for the Iwasaki ac-

tion [41, 39]. We used the coupling computed in the MS scheme. For the UKQCD data

set we used the coupling determined on the same data set [42]. For the CP-PACS data we

used the MS coupling quoted in their paper [22]. The coupling was evaluated at the scale

µ = 1/a. Our results are in table 4. As we only have decay constants for two different quark

masses with the same action, we do not attempt a chiral extrapolation. The dependence of

the decay constant on the pion mass seems small, however. In table 5 we compare our results

to other determinations of the decay constants. The results in table 4 show that the decay

constant fa0
is not suppressed relative to the pion decay constant.
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κ a fa0
/ẐS ẐS fa0

MeV

.1355 0.352(19) 0.70 488(26)

.1350 0.346(30) 0.71 460(40)

.1410 0.474(48) 0.79 478(48)

.1390 0.480(97) 0.84 513(104)

Table 4: Our results for decay constant of the a0 meson.

Group Method fa0
MeV

Maltman [23] sum rule 298

Shakin and Wang. [44] model 433

Narison. [34] sum rule 320 − 390

Table 5: Some results for decay constant of the a0 meson. We used a value of md −mu of 4 MeV to convert

the normalisation of Narison’s estimate. The quark masses quoted by Shakin and Wang were used to convert

normalisation conventions for other two results.

The decay constant of the 0++ meson is one of the parameters in the model that gets rid

of the ghost state in the scalar 0++ correlator in quenched QCD [4, 12], so there are numbers

for it from quenched QCD. The quenched studies of the 0++ used another normalisation

convention for the scalar decay constant, so we do not tabulate their values here.

Chernyak [43] uses a fit to data with a factorisation assumption to obtain g0+ = 70 ± 10

MeV for the K∗(1430). Converting to our normalisation conventions, using a nominal value

of the strange quark mass of 100 MeV, this corresponds to fK∗(1430) = 1000 ± 140 MeV.

The results for the decay constants in table 4 are larger than the results of UKQCD’s recent

calculation of the decay constant of the 0+ charm-light meson [35].

As an aside we note that if the decay constant g0+ of the a0 or K⋆(1430) was measured ex-

perimentally, then it would allow an additional method to measure the quark mass differences

mu − md, ms − md respectively, using lattice estimates of the QCD matrix elements.

5 Discussion

For the non-strange flavour non-singlet scalar meson (a0), our lattice determinations using

the self-consistent Nf = 2 approximation to QCD give clear support for a physical a0 meson

lying substantially lighter than the b1. The mass estimates we find are consistent with the
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observed a0 at 950 MeV but not the heavier state at 1474 MeV.

To relate our approach to experiment with an additional strange quark, we can assume

that the strange quark pair production is relatively small and so can be neglected. For K∗

0

propagation, for example, this amounts to treating the Kπ channel correctly but having an

anomalous contribution from Kηss intermediate states. Here the ηss propagation will not have

a single exponential but two contributions with masses corresponding to (i) the connected

pseudoscalar meson with valence quarks of strange mass and (ii) the η2 meson. Both of these

contributions are not especially light, so we do not expect any major distortion of the K∗

0

from using valence s-quarks. Similarly the a0 decays to KK̄ and η8π are expected to be

accessible without major distortion.

For the strange scalar mesons, the K∗

0(1430) with mass 1412 MeV is heavier than the

corresponding axial mesons (K∗

1 with masses 1273 and 1402 MeV). These two axial mesons

are related to a mixture of the strange partners of the non-strange b1 and a1 mesons since

charge conjugation is not a good quantum number for strange mesons. So the interpretation

in this case is unclear. As well as this strange scalar meson at 1412 MeV, one might expect

a lighter state, about 100-130 MeV heavier (mass split determined from tensor mesons) than

the a0(980). The so-called kappa (κ) at 700-900 MeV with a very broad width (400 MeV

or more) has been claimed by many sources [1] and a recent analysis [45] gives mass 750+30
−50

MeV. There is no consensus yet on the existence of the kappa, because some analyses of

experimental data see no sign of it [46]. Our lattice studies suggest that a scalar K∗

0 meson

of mass around 1000-1200 MeV would be expected in a theory with Nf = 2 sea quarks and

a strange quark treated as a valence quark. Such a lattice treatment does not include the

Kπ threshold in the meson propagation (for our case where s-quark and sea-quark have the

same mass) and so may be less reliable than the a0 propagation.

The connected decay diagram (T ) is appropriate for the decays a0 → KK, a0 → πη8 and

K0 → Kπ where the appropriate factors are given in Table 2. Then the experimental data [1]

can be used to estimate the coupling (from Γ/k). For K∗

0(1430), this gives g2 = 0.32(3).

While for the κ, one recent analysis [45] finds a width of 342± 60 MeV which corresponds to

g2 = 0.7(2). For a0(980), the state is close to the K̄K threshold which distorts the appearance

of the meson. Phenomenological analyses vary but one example quotes [47] a total width of

153 MeV and a coupling given by g2 = 0.82 for K̄K and around 0.7 for ηπ. For a0(1450),

the partial widths are not well known and one can only estimate that the K̄K and ηπ decays

yield couplings smaller than g2 = 0.23 and 0.34 respectively.

Our determination of the coupling which controls decay is also relevant for identification
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of states. We find a coupling (normalised to diagram T above) given by g ≈ 1. This favours

the lighter a0 and κ meson over the heavier states. Our determination of the a0 decay

constant disfavours a molecular structure for this state, in agreement with our conclusion

from hadronic decays. The only concern is that for the K∗

0 meson the experimental evidence

gives a κ meson lighter than our expectations.

6 Conclusion

We have studied the spectrum and decay of non-singlet scalar mesons from first principles

using lattices with a consistent (unitary) field theoretic interpretation for Nf = 2 flavours of

sea-quark. Rather than extrapolate the scalar masses directly, we concentrate on the mass

splitting between the a0 and b1 mesons from the lattice. The lattice results are unambiguous

and point to a scalar meson which is 221(40) MeV lighter than the b1. Since the experimental

mass value of the b1 meson is 1230 MeV, this suggests that the a0(980) is indeed the lightest

non-singlet scalar meson in a theory with Nf = 2 flavours of degenerate quark. Our approach

does not include the KK̄ channel, so this channel is to be regarded as having an impact on

a pre-existing state, rather than as being the dominant component of the state. In other

words, we do not find that a KK̄ molecule is a good approximation to the a0(980).

Our results for the decay transition amplitude are also consistent with the phenomeno-

logical estimates of the coupling of the a0(980) to KK̄ and ηπ. Overall, we conclude that

the a0(980) is predominantly a conventional meson with normal couplings to q̄q.

For the K∗

0 scalar meson, we expect a mass 100-130 MeV heavier than the a0 (based, for

example, on the observed mass splittings of the tensor mesons). This is not easily related

to any experimental candidate: the κ is too light (700-900 MeV), while the K∗

0 (1430) is too

heavy. What may help clarification is that we find a decay coupling transition (to Kπ) which

is comparable to that needed phenomenologically for the κ but much larger than that needed

for the K∗

0(1430). This suggests that the κ is more closely related to the state obtained in

Nf = 2 lattice QCD. A lattice treatment with the strange quark included in the sea would

help to clarify further this conclusion.
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Figure 1: Mass difference of b1 and a0 mesons (in units of r0 ≈ 0.5fm) versus quark mass. The strange

quark mass corresponds to (m(π)r0)
2 ≈ 3.4.
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Figure 2: Quark diagrams involved in the decays listed in Table 3, where D is the disconnected diagram

and T is the triangle diagram.
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Figure 3: The normalised ratio R(t) for the connected contribution (T ) to the transition S → P1P2. The

number of lattice gauge configurations analysed was 90 (U355), 165 (C410) and 30 for each U395 case. The

dotted line illustrates the expected behaviour with slope xa for C410.
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Figure 4: The effective coupling g extracted from R(t) as described in the text for the triangle graph T for

S → P1P2 with zero momentum (also some results for non-zero momentum as discussed in the text). The

dotted line at g = 1 is to guide the eye.
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Figure 5: The normalised ratio R(t). Here MOM=0, 1 refers to the transition S(k) → P1(0) + P2(k) with

momenta k = 2nπ/L with n = 0 and 1.
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