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The spectral properties of hybrid meson interpolating fields are investigated. The quantum numbers of the

meson are carried by smeared-source fermion operators and highly-improved chromo-electric and -magnetic field

operators composed with APE-smeared links. The effective masses of standard and hybrid operators indicate

that the ground state meson is effectively isolated using both standard and hybrid interpolating fields. Focus is

placed on interpolating fields in which the large spinor components of the quark and antiquark fields are merged.

In particular, the effective mass of the exotic 1−+ meson is reported. Further, we report some values for excited

mesonic states using a variational process.

1. INTRODUCTION

Major experimental efforts are currently aimed
at determining the possible existence of exotic
mesons; mesons having quantum numbers that
cannot be carried by the minimal Fock space com-
ponent of a quark-antiquark pair. Of particular
mention is the proposed program of the GlueX
collaboration associated with the forthcoming up-
grade of the Jefferson Laboratory facility. The
observation of exotic states and the determina-
tion of their properties would elucidate aspects of
QCD which are relatively unexplored.

The quantum numbers JPC = 0+−, 0−−, 1−+,
etc. cannot be carried by a quark-antiquark pair
in a ground-state S-wave. Lattice QCD calcu-
lations exploring the non-trivial role of explicit
gluon degrees of freedom in carrying the quan-
tum numbers of the meson suggest that exotic
meson states do indeed exist and have a mass the
order of 2 GeV [1]. These findings are further
supported here.

2. SIMULATION METHODOLOGY

Operators carrying exotic quantum numbers
can be constructed by merging standard local
interpolating fields qa(x)Γqa(x) with chromo-
electric, Eab

i (x), or chromo-magnetic fields,

Bab
i (x). The JPC quantum numbers of the in-

terpolator are derived from the direct product
of those associated with the quark bilinear and
Eab

i (1−−) or Bab
i (1+−). For example, com-

bining the vector current of the ρ meson with
a chromo-magnetic field, 1−− ⊗ 1+− provides
0−+ ⊕ 1−+ ⊕ 2−+ with the 0−+: q̄aγiq

bBab
i (π

meson) and the 1−+: ǫijk q̄aγiq
bBab

j (exotic). We
restrict ourselves to the lowest energy-dimension
operators, as these provide better signal with
smaller statistical errors. Table 1 summarizes the
standard and hybrid interpolating fields explored
herein.

The formulation of effective interpolating fields
for the creation and annihilation of exotic meson
states continues to be an active area of research.

For example, one can generalize the structure of
the interpolating fields further to include nonlocal
components where link paths are incorporated to
maintain gauge invariance and carry the nontriv-
ial quantum numbers of the gluon fields. In this
case, numerous quark propagators are required
for each gauge field configuration rendering the
approach computationally expensive.

Here we consider local interpolating fields.
Gauge-invariant Gaussian smearing [2,3] is ap-
plied at the fermion source (t = 3), and lo-
cal sinks are used to maintain strong signal in
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Table 1
JPC quantum numbers and their associated meson interpolating fields.

0++ 0+− 0−+ 0−−

q̄aqa q̄aγ4q
a q̄aγ5q

a −iq̄aγ5γjE
ab
j qb

−iq̄aγjE
ab
j qb q̄aγ5γjB

ab
j qb q̄aγ5γ4q

a

−q̄aγjγ4γ5B
ab
j qb −q̄aγjB

ab
j qb

−q̄aγjγ4E
ab
j qb −q̄aγ4γjB

ab
j qb

1++ 1+− 1−+ 1−−

−iq̄aγ5γjq
a −iq̄aγ5γ4γjq

a q̄aγ4E
ab
j qb −iq̄aγjq

a

iq̄aγ4B
ab
j qb iq̄aBab

j qb −ǫjklq̄
aγkBab

l qb q̄aEab
j qb

iǫjkl q̄
aγkEab

l qb q̄aγ5E
ab
j qb ǫjkl q̄

aγ4γkBab
l qb −iq̄aγ5B

ab
j qb

iǫjkl q̄
aγkγ4E

ab
l qb q̄aγ5γ4E

ab
j qb −iǫjklq̄

aγ5γ4γkEab
l qb iq̄aγ4γ5B

ab
j qb

the two-point correlation functions. Chromo-
electric and -magnetic fields are created from
APE-smeared links [4] at both the source and sink
using the highly-improvedO(a4)-improved lattice
field strength tensor [5]. In this study, the smear-
ing fraction α = 0.7 (keeping 0.3 of the original
link) and the process of smearing and SU(3) link
projection is iterated four times [6]. This amount
of smearing is sufficient to provide a meaningful
topological charge and appears to be suitable for
the creation of exotic mesons. As such, the results
presented here supersede an earlier presentation
of hybrid meson masses [7].

Propagators are generated using the fat-link ir-
relevant clover (FLIC) fermion action [8] where
the irrelevant Wilson and clover operators of the
fermion action are constructed using fat links
while the relevant operators use the untouched
(thin) gauge links. FLIC fermions provide a new
form of nonperturbative O(a) improvement [9,10]
where near-continuum results are obtained at fi-
nite lattice spacing. Access to the light quark
mass regime is enabled by the improved chiral
properties of the lattice fermion action [10].

Excited states are extracted using a variational
technique, corresponding to a construction of op-
timal linear combinations of the original opera-
tors. For the sake of completeness, we shall dis-
cuss this here, in direct analogy to the procedure
described in [11].

3. ANALYTICAL PROCESS

Consider the momentum-space meson two-
point function for t > 0,

Gij(t, ~p) =
∑

~x

e−i~p·~x〈Ω|χi(t, ~x)χ†
j(0,~0)|Ω〉 , (1)

where i, j label the different interpolating fields
and we focus on Lorentz scalar interpolators for
simplicity. At the hadronic level,

Gij(t, ~p) =
∑

~x

e−i~p·~x
∑

H,p′

〈Ω|χi(t, ~x)|H, p′〉

× 〈H, p′|χ†
j(0,~0)|Ω〉 ,

where the |H, p′〉 are a complete set of hadronic
states.
∑

H,p′

|H, p′〉〈H, p′| = I . (2)

We can make use of translational invariance to
write this as

∑

~x,H,p′

e−i~p·~x

〈

Ω

∣

∣

∣

∣

χi(0)ei ~̂P ·~xe−Ĥt

∣

∣

∣

∣

H, p′
〉

×

〈

H, p′
∣

∣

∣
χ†

j(0)
∣

∣

∣
Ω
〉

=
∑

H

e−EHt
〈

Ω|χi|H, p〉〈H, p|χ†
j |Ω
〉

. (3)

It is convenient in the following discussion to la-
bel the states which have the χ interpolating field
quantum numbers as |Hα〉 for α = 1, 2, · · · , N . In



3

general the number of states, N , in this tower of
excited states may be infinite, but we will only
ever need to consider a finite set of the lowest
such states here. After selecting zero momentum,
~p = 0,

Gij(t) ≡ Gij(t,~0) =

N
∑

α=1

e−mαtλα
i λ†α

j , (4)

where λα
i and λ†α

j are coefficients denoting the

couplings of the interpolating fields χi and χ†
j ,

respectively, to the state |Hα〉. If we use identical
source and sink interpolating fields then it fol-
lows from the definition of the coupling strength
that λ†α

j = (λα
j )∗ and from Eq. (4) we see that

Gij(t) = [Gji(t)]
∗, i.e., G is a Hermitian matrix.

If, in addition, we use only real coefficients in the
link products, then G is a real symmetric ma-
trix. For the correlation matrices that we con-
struct we have real link coefficients but we use
smeared sources and point sinks and so in our cal-
culations G is a real but non-symmetric matrix.
Since G is a real matrix for the infinite number
of possible choices of interpolating fields with real
coefficients, then we can take λα

i and λ†α
j to be

real coefficients here without loss of generality. In
constructing correlation functions, we effectively
average over {U} and {U∗} configurations to en-
sure λα

i is purely real, even on a finite ensemble
of gauge field configurations [11].

Now, let us consider the ideal case where we
have N interpolating fields with the same quan-
tum numbers, but which give rise to N linearly
independent states when acting on the vacuum.
In this case we can construct N ideal interpolat-
ing source and sink fields which perfectly isolate
the N individual hadron states |Hα〉, i.e.,

φ†α =

N
∑

i=1

uα
i χ†

i , (5)

φα =
N
∑

i=1

v∗α
i χi , (6)

such that

〈Hβ|φ†α |Ω〉 = δαβ z†α , (7)

〈Ω|φα |Hβ〉 = δαβ zα , (8)

where zα and z†α are the coupling strengths of φα

and φ†α to the state |Hα〉. The coefficients uα
i and

v∗α
i in Eqs. (3) may differ when the source and

sink have different smearing prescriptions, again
indicated by the differentiation between zα and
z†α (recall z is real).

For notational convenience for the remainder
of this discussion repeated indices i, j, k are to
be understood as being summed over, whereas α
denoting a particular state is not. At ~p = 0, it
follows that,

Gij(t) uα
j =

(

∑

~x

〈Ω|χiχ
†
j |Ω〉

)

uα
j

= λα
i z†αe−mαt. (9)

The t-dependence in this expression is purely in
the exponential term, leading to the recurrence
relationship

Gij(t)uα
j = emαGik(t + 1)uα

k , (10)

which can be rewritten as

[G(t + 1)]−1

ki Gij(t)uα
j = emα uα

k . (11)

This is the generalized eigenvalue equation for
[G(t + 1)]−1G(t) with eigenvalues emα and eigen-
vectors uα. Hence the natural logarithms of the
eigenvalues of [G(t + 1)]−1G(t) are the masses of
the N hadrons in the tower of excited states for
the given quantum numbers . The eigenvectors
are the coefficients of the χ fields providing the
optimal linear combination for that state.

One can also construct the equivalent left-
eigenvalue equation to recover the v vectors, pro-
viding the optimal linear combination of annihi-
lation interpolators,

v∗α
k Gkj(t) = emαv∗α

i Gij(t + 1) . (12)

Recalling Eq. (9), one finds:

Gij(t) uα
j = z†αλα

i e−mαt , (13)

v∗α
i Gij(t) = zαλ†α

j e−mαt , (14)

v∗α
k Gkj(t)Gil(t) uα

l = zαz†αλα
i λ†α

j e−2mαt .(15)

The definitions of Eqs. (7) and (8) imply

v∗α
i Gij(t) uα

j = zαz†αe−mαt, (16)
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indicating the eigenvectors may be used to con-
struct a correlation function in which a single
state mass mαis isolated and which can be an-
alyzed using the methods of Section II. We refer
to this as the projected correlation function in the
following. Combining Eqs. (15) and (16) leads us
to the result

v∗α
k Gkj(t)Gil(t) uα

l

v∗α
k Gkl(t)uα

l

= λα
i λ†α

j e−mαt . (17)

By extracting all N2 such ratios, we can exactly
recover all of the real couplings λα

i and λ†α
j of χi

and χ†
j respectively to the state |Hα〉.

Note that throughout this section no assump-
tions have been made about the symmetry prop-
erties of Gij . This is essential due to our use of
smeared sources and point sinks.

In practice we will only have a relatively small
number, M < N , of interpolating fields in any
given analysis. These M interpolators should be
chosen to have good overlap with the lowest M
excited states in the tower and we should attempt
to study the ratios in Eq. (17) at early to inter-
mediate Euclidean times, where the contribution
of the (N − M) higher mass states will be sup-
pressed but where there is still sufficient signal to
allow the lowest M states to be seen. This pro-
cedure will lead to an estimate for the masses of
each of the lowest M states in the tower of ex-
cited states. Of these M predicted masses, the
highest will in general have the largest system-
atic error while the lower masses will be the most
reliably determined. Repeating the analysis with
varying M and different combinations of interpo-
lating fields will give an objective measure of the
reliability of the extraction of these masses.

In our case of a modest 2×2 correlation matrix
(M = 2) we take a cautious approach to the selec-
tion of the eigenvalue analysis time. As already
explained, we perform the eigenvalue analysis at
an early to moderate Euclidean time where sta-
tistical noise is suppressed and yet contributions
from at least the lowest two mass states is still
present. One must exercise caution in perform-
ing the analysis at too early a time, as more than
the desired M = 2 states may be contributing to
the 2 × 2 matrix of correlation functions.

Figure 1. Effective mass plot of the 1−+ ex-
otic meson obtained from the hybrid interpolating
field ǫjkl q̄

aγkBab
l qb.

4. RESULTS

The following results are based on 110 mean-
field O(a2)-improved Luscher-Weisz [12] gauge
fields on a 163 × 32 lattice at β = 4.60 provid-
ing a lattice spacing of a = 0.122(2) fm set by the
string tension

√
σ = 440 MeV.

Of the hybrid interpolators listed in Table 1,
only the interpolating fields merging the large
spinor components of the quark and antiquark
fields provide a clear mass plateau. The effective
mass plot for the exotic 1−+ meson is illustrated
in Fig. 1, where a plateau at early times is ob-
served confirming the existence of the exotic 1−+.

Figures 2 and 3 illustrate the effective masses
M(t) = − log(G(t + 1)/G(t)), obtained from
the first and third, and second and fourth, pion
(0−+) interpolators of Table 1 for our interme-
diate quark mass (m2

π ∼ 0.6 GeV2). Excel-
lent agreement is seen between the standard and
hybrid interpolator-based correlation functions.
Similar results are seen in Fig. 4 comparing ef-
fective masses obtained from the first and third
ρ-meson (1−−) interpolators of Table 1.

Table 2 summarizes these preliminary results,
and table 3 presents a further preliminary calcu-
lation of a pion excited state mass, using the first
two pion operators listed above.

Further work on this topic will focus on increas-
ing the statistics, and increasing the number of
operators used in the variational process.
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Table 2
Meson masses as a function of the hopping parameter κ.

Mass(GeV)
JPC Operator κ = 0.1260 κ = 0.1266 κ = 0.1273 κ = 0.1279 κ = 0.1286

π : 0−+ q̄aγ5q
a 0.965 ± .006 0.887 ± .006 0.789± .007 0.696± .007 0.570 ± .008

q̄aγ5γ4q
a 0.957 ± .005 0.879 ± .005 0.781± .005 0.688± .006 0.563 ± .006

−q̄aγjB
ab
j qb 0.998 ± .030 0.916 ± .031 0.813± .031 0.717± .032 0.589 ± .035

−q̄aγ4γjB
ab
j qb 0.984 ± .033 0.902 ± .034 0.800± .035 0.704± .037 0.575 ± .039

b1 : 1+− −iq̄aγ5γ4γjq
a 1.713 ± .018 1.671 ± .019 1.623± .021 1.583± .022 1.541 ± .026

iq̄aBab
j qb 1.685 ± .205 1.621 ± .226 1.525± .275 1.398± .353 1.120 ± .500

ρ : 1−− −iq̄aγjq
a 1.212 ± .009 1.157 ± .010 1.093± .012 1.037± .014 0.973 ± .019

q̄aEab
j qb 1.198 ± .056 1.151 ± .063 1.099± .076 1.048± .091 0.958 ± .110

−iq̄aγ5B
ab
j qb 1.214 ± .050 1.156 ± .053 1.085± .058 1.018± .064 0.922 ± .077

iq̄aγ4γ5B
ab
j qb 1.125 ± .049 1.060 ± .054 0.982± .061 0.907± .069 0.799 ± .087

1−+ −ǫjkl q̄
aγkBab

l qb 2.519 ± .186 2.483 ± .192 2.450± .200 2.434± .207 2.430 ± .211

Table 3
Pion excited state from variational analysis.

Mass(GeV)
κ = 0.1260 κ = 0.1266 κ = 0.1273 κ = 0.1279 κ = 0.1286

π(1) : 0.956 ± .007 0.878 ± .007 0.779± .008 0.684± .009 0.555 ± .014
π(2) : 1.889 ± .064 1.819 ± .070 1.730± .080 1.647± .096 1.548 ± .141

Figure 2. Effective mass plot for correlation func-
tions of the standard pion interpolator q̄aγ5q

a and
the hybrid pion interpolator q̄aγjB

ab
j qb.
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Figure 3. Effective mass plot for correlation func-
tions of the standard axial-vector pion interpo-
lator q̄aγ5γ4q

a and the hybrid pion interpolator
q̄aγ4γjB

ab
j qb.
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