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The spectral properties of hybrid meson interpolating fields are investigated. The quantum numbers of the

meson are carried by smeared-source fermion operators and highly-improved chromo-electric and -magnetic field

operators composed with APE-smeared links. The effective masses of standard and hybrid operators indicate

that the ground state meson is effectively isolated using both standard and hybrid interpolating fields. Focus is

placed on interpolating fields in which the large spinor components of the quark and antiquark fields are merged.

In particular, the effective mass of the exotic 1−+ meson is reported. Further, we report some values for excited

mesonic states using a variational process.

1. INTRODUCTION

Major experimental efforts are currently aimed
at determining the possible existence of exotic
mesons; mesons having quantum numbers that
cannot be carried by the minimal Fock space com-
ponent of a quark-antiquark pair. Of particular
mention is the proposed program of the GlueX
collaboration associated with the forthcoming up-
grade of the Jefferson Laboratory facility. The
observation of exotic states and the determina-
tion of their properties would elucidate aspects of
QCD which are relatively unexplored.

The quantum numbers JPC = 0+−, 0−−, 1−+,
etc. cannot be carried by a quark-antiquark pair
in a ground-state S-wave. Lattice QCD calcu-
lations exploring the non-trivial role of explicit
gluon degrees of freedom in carrying the quan-
tum numbers of the meson suggest that exotic
meson states do indeed exist and have a mass the
order of 2 GeV [1]. These findings are further
supported here.

2. SIMULATION METHODOLOGY

Exotic quantum numbers can be constructed
by merging standard local interpolating fields
qa(x)Γqa(x) with chromo-electric, Eab

i (x), or
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chromo-magnetic fields, Bab
i (x). The JPC quan-

tum numbers of the interpolator are derived from
the direct product of those associated with the
quark bilinear and Eab

i (1−−) or Bab
i (1+−). For

example, combining the vector current of the
ρ meson with a chromo-magnetic field, 1−− ⊗
1+− provides 0−+ ⊕ 1−+ ⊕ 2−+ with the 0−+:
q̄aγiq

bBab
i (π meson) and the 1−+: ǫijk q̄aγiq

bBab
j

(exotic). We restrict ourselves to the lowest
energy-dimension operators, as these provide bet-
ter signal with smaller statistical errors. Table 1
summarizes the standard and hybrid interpolat-
ing fields explored herein.

The formulation of effective interpolating fields
for the creation and annihilation of exotic me-
son states continues to be an active area of
research. Here we consider local interpolating
fields. Gauge-invariant Gaussian smearing [2,3]
is applied at the fermion source (t = 3), and lo-
cal sinks are used to maintain strong signal in
the two-point correlation functions. Our expe-
rience is that smeared-smeared correlation func-
tions suffer an increase in error bar size relative
to smeared-local correlation functions. Chromo-
electric and -magnetic fields are created from
APE-smeared links [4] at both the source and sink
using the highly-improved O(a4)-improved lattice
field strength tensor [5]. The smearing fraction
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Table 1
JPC quantum numbers and their associated meson interpolating fields.

0++ 0+− 0−+ 0−−

q̄aqa q̄aγ4q
a q̄aγ5q

a −iq̄aγ5γjE
ab
j qb

−iq̄aγjE
ab
j qb q̄aγ5γjB

ab
j qb q̄aγ5γ4q

a

−q̄aγjγ4γ5B
ab
j qb −q̄aγjB

ab
j qb

−q̄aγjγ4E
ab
j qb −q̄aγ4γjB

ab
j qb

1++ 1+− 1−+ 1−−

−iq̄aγ5γjq
a −iq̄aγ5γ4γjq

a q̄aγ4E
ab
j qb −iq̄aγjq

a

iq̄aγ4B
ab
j qb iq̄aBab

j qb −ǫjklq̄
aγkBab

l qb q̄aEab
j qb

iǫjkl q̄
aγkEab

l qb q̄aγ5E
ab
j qb ǫjkl q̄

aγ4γkBab
l qb −iq̄aγ5B

ab
j qb

iǫjkl q̄
aγkγ4E

ab
l qb q̄aγ5γ4E

ab
j qb −iǫjklq̄

aγ5γ4γkEab
l qb iq̄aγ4γ5B

ab
j qb

α = 0.7 (keeping 0.3 of the original link).[6].
Propagators are generated using the fat-link ir-

relevant clover (FLIC) fermion action [7] where
the irrelevant Wilson and clover operators of the
fermion action are constructed using fat links
while the relevant operators use the untouched
(thin) gauge links. FLIC fermions provide a new
form of nonperturbative O(a) improvement [8,9]
where near-continuum results are obtained at fi-
nite lattice spacing. Access to the light quark
mass regime is enabled by the improved chiral
properties of the lattice fermion action [9].

The following results are based on 222 mean-
field O(a2)-improved Luscher-Weisz [10] gauge
fields on a 163 × 32 lattice at β = 4.60 provid-
ing a lattice spacing of a = 0.122(2) fm set by the
string tension

√
σ = 440 MeV.

3. RESULTS

Of the hybrid interpolators listed in Table 1,
only the interpolating fields merging the large
spinor components of the quark and antiquark
fields provide a clear mass plateau. Figure 1 il-
lustrates the effective masses M(t) = − log(G(t+
1)/G(t)), obtained from the second and fourth
pion (0−+) interpolators of Table 1 for our in-
termediate quark mass (m2

π ∼ 0.6 GeV2). Here
G(t) is the standard two-point function pro-
jected to zero three-momentum. Excellent agree-
ment is seen between the standard and hybrid
interpolator-based correlation functions. Simi-

Figure 1. Effective mass plot for correlation func-
tions of the standard axial-vector pion interpo-
lator q̄aγ5γ4q

a and the hybrid pion interpolator
q̄aγ4γjB

ab
j qb.

lar results are seen in Fig. 2 comparing effective
masses obtained from the first and third ρ-meson
(1−−) interpolators of Table 1. The effective mass
plot for the exotic 1−+ meson is illustrated in Fig.
3, where a plateau at early times is observed con-
firming the existence of the exotic 1−+.

Table 2 summarizes these preliminary results.
Further work on this topic will focus on extrapo-
lating results to physical quark masses and using
variational techniques to extract the masses of ex-
cited mesonic states. This research is supported

by the Australian National Computing Facility
for Lattice Gauge Theory and the Australian Re-
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Table 2
Meson masses as a function of the hopping parameter κ.

Mass(GeV)
JPC Operator κ = 0.1260 κ = 0.1266 κ = 0.1273 κ = 0.1279 κ = 0.1286

π : 0−+ q̄aγ5q
a 0.937 ± .005 0.861 ± .006 0.764± .006 0.672± .007 0.545 ± .007

q̄aγ5γ4q
a 0.932 ± .006 0.856 ± .007 0.761± .007 0.670± .007 0.548 ± .007

−q̄aγjB
ab
j qb 0.999 ± .062 0.918 ± .066 0.816± .072 0.722± .076 0.561 ± .081

−q̄aγ4γjB
ab
j qb 0.964 ± .045 0.888 ± .045 0.791± .045 0.696± .045 0.561 ± .046

b1 : 1+− −iq̄aγ5γ4γjq
a 1.675 ± .012 1.633 ± .013 1.585± .013 1.548± .015 1.513 ± .017

iq̄aBab
j qb 2.373 ± .256 2.319 ± .246 2.264± .233 2.225± .222 2.223 ± .224

ρ : 1−− −iq̄aγjq
a 1.184 ± .007 1.131 ± .008 1.070± .009 1.016± .010 0.954 ± .013

−iq̄aγ5B
ab
j qb 1.255 ± .138 1.178 ± .117 1.077± .086 0.977± .138 0.836 ± .174

iq̄aγ4γ5B
ab
j qb 1.244 ± .086 1.172 ± .087 1.079± .088 0.987± .092 0.861 ± .102

1−+ −ǫjkl q̄
aγkBab

l qb 2.892 ± .475 2.881 ± .475 2.884± .479 2.908± .500 2.969 ± .516

Figure 2. Effective mass plot for correlation func-
tions of the standard ρ-meson interpolator q̄aγjq

a

and the hybrid ρ interpolator q̄aγ4γ5B
ab
j qb.

search Council.
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