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Abstract

We discuss the allowed decays of a hybrid meson in the heavy quark

limit. We deduce that an important decay will be into a heavy quark non-

hybrid state and a light quark meson, in other words, the de-excitation

of an excited gluonic string by emission of a light quark-antiquark pair.

We discuss the study of hadronic decays from the lattice in the heavy

quark limit and apply this approach to explore the transitions from a

spin-exotic hybrid to χbη and χbS where S is a scalar meson. We obtain

a signal for the transition emitting a scalar meson and we discuss the

phenomenological implications.

1 Introduction

Hybrid mesons are those with non-trivial excited gluonic components. The
simplest such case is when the spin-parity is exotic, namely not allowed in the
quark model. Here we specialise to heavy quarks and so our comparisons with
experiment will be for bb̄ systems. In this context, there will be a spin-exotic
(JPC = 1−+) meson whose properties can be determined from lattice QCD. We
review here first the information on the nature and spectrum of such excited
gluonic states. We then discuss in general the allowed decay modes of such a
state. In most of this discussion we focus on predictions in the heavy quark
limit, so with heavy quark spin-flip neglected.

We then review lattice methods to extract hadronic transition matrix ele-
ments. In the case of hybrid decay, we explore the creation of a light quark-
antiquark state from the gluonic field of the hybrid meson. It is possible to fulfil
the rather restricted conditions on a lattice and we are able to explore these
transitions. We study hybrid meson transitions to χbη and χbS where S is a
scalar meson. We obtain a signal for the transition emitting a scalar meson and
we discuss the phenomenological implications.
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2 Hybrid states on the lattice

The static quark approach gives a very straightforward way to explore hybrid
quarkonia. These will be QQ̄ states in which the gluonic contribution is excited.
The ground state of the gluonic degrees of freedom has been explored on the
lattice, and, as expected, corresponds to a symmetric cigar-like distribution
of colour flux between the two heavy quarks at separation R. One can then
construct less symmetric colour distributions which would correspond to gluonic
excitations. For a review see ref. [1]. The properties of the physical states
can then be obtained from these static potentials by solving the Schrödinger
equation in the adiabatic approximation.

The way to organise this is to classify the gluonic fields according to the
symmetries of the system. This discussion is very similar to the description of
electron wave functions in diatomic molecules. The symmetries are (i) rotation
around the separation axis z with representations labelled by Jz (ii) CP with
representations labelled by g and u and (iii) CR. Here C interchanges Q and
Q̄, P is parity and R is a rotation of 1800 about the mid-point around the y
axis. The CR operation is only relevant to classify states with Jz = 0. The
convention is to label states of Jz = 0, 1, 2 by Σ, Π, ∆ respectively.

In lattice studies the rotation around the separation axis is replaced by
a four-fold discrete symmetry and states are labelled by representations of the
discrete group D4h. The ground state configuration of the colour flux is then Σ+

g

(A1g on the lattice). The exploration of the energy levels of other representations
has a long history in lattice studies [2]. The first excited state is found to be the
Πu (Eu on a lattice) - see figure 1 for an illustration. This can be visualised as the
symmetry of a string bowed out in the x direction minus the same deflection in
the −x direction (plus another component of the two-dimensional representation
with the transverse direction x replaced by y), corresponding to flux states
from a lattice operator which is the difference of U-shaped paths from quark to
antiquark of the form ⊓ − ⊔.

A summary of lattice determinations of the energy of this lowest hybrid
state [1] puts it at m(H) = 10.76(7) GeV for b quarks, so approximately 1.3
GeV heavier than the Υ. This hybrid state in the adiabatic approximation will
have lowest angular momentum L = 1 and combining this with the heavy quark
spins gives 8 degenerate JPC values. Of special interest is the spin exotic state
with JPC = 1−+ which is expected to be the lightest spin-exotic meson. Since
it is spin-exotic, it cannot mix with the non-hybrid QQ̄ states and is thus of
considerable theoretical and experimental interest.

3 Hybrid meson decays

We shall be discussing hybrid meson decays in the heavy quark limit - so our
conclusions will be more applicable to b-quark systems than c-quarks. From
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Figure 1: The ground state (A1g) of the static potential V (R) and the first
gluonic excitation (Eu) from this work with Nf = 2 flavours of sea quark (of
approximately the mass of the strange quark), in lattice units with a ≈ 0.1fm.
The energy of a scalar meson with momentum π/8a above the ground state
potential is shown by the continuous line.

the adiabatic approximation, one solves the gluonic field around a static quark-
antiquark at separation R to determine a potential first and then solves the
Schrödinger equation in that potential. For a spin-exotic hybrid with an excited
gluonic field having Jz = 1 about the interquark axis, it follows that the quark-
antiquark must have orbital angular momentum greater than or equal to one
unit and we will assume the least angular momentum allowed, namely a P-wave.
Hence the quark-antiquark system has L = 1 in the hybrid and this will persist
to the final state in any decay. Furthermore the spin-exotic hybrid has the
heavy quark-antiquark in a spin triplet so this (and its spin projection ) will also
persist to the final state in any decay. The potential that binds the hybrid meson
is relatively flat (see fig. 1). Hence the hybrid meson has an extended radial

wavefunction, for example [3] with R-dependence of uH ≈ R2e−(R/0.51)2 in units
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of fm for the inter-quark coordinate R for b quarks. This has implications for
their production and decay. For instance, any vector hybrid state will only be
weakly produced in e+e− collisions because the wave function at the origin is
suppressed.

We shall later consider transitions at fixed R from the hybrid state to the P-
wave χb state with radial wavefunction approximately uχ ≈ R2e−(R/0.33)2 with
R in fm. The lack of nodes in the relevant wave functions implies a spatial wave
function overlap factor which is quite large (ie assuming the transition rate is
independent of R, for the above normalised wavefunctions

∫

uHuχdR = 0.63).
Given the mass estimate above, the open channels for decay of a JPC = 1−+

hybrid include BB̄∗, B∗B̄∗, ηbη, ηbη
′, χbη, χbS, Υ(1s)ω and Υ(1s)φ where S

is a scalar meson which can subsequently decay to ππ (note decay to BB̄ is not
allowed by C conservation). However, as discussed above, decays to quarkonia
are only allowed into a χb state in the heavy quark limit. Thus decays to ηb or
Υ(1s) proceed by heavy quark symmetry violations (of order 1/Mb). We do not
discuss these modes further here.

Selection rules have been proposed for hybrid decays, for example [4] that
H 6→ X + Y if X and Y have the same non-relativistic structure and each has
L = 0. This would rule out BB̄, BB̄∗ and B∗B̄∗ and the analogous cases for
charm quarks. This selection rule can be addressed directly from the static quark
approach. The symmetries in this case of rotations and reflections about the
separation axis have to be preserved in the strong decay. From the initial state
with the gluonic field in a given symmetry representation, the qq̄ pair must be
produced in the decay in such a way that the combined symmetry of the quark
pair and the final gluonic distribution matches the initial representation.

We first discuss decays of non-hybrid quarkonia to set the scene. For the
ground state of the gluonic excitation (Σ+

g , non-hybrid) we have Jz = 0 and

even CP . Thus, for this state to decay to (Qq̄)(Q̄q) with each heavy-light meson
having L = 0, the final gluonic distribution is also spatially symmetric about
the separation axis (actually it is essentially two spherical blobs around each
static source binding the heavy light mesons). Then any qq̄ pair production has
to respect this symmetry and have Jz = 0 and even CP . Since each light quark
has no orbital angular momentum about the separation axis, the CP condition
then requires Sqq̄ = 1, a triplet state. This conclusion for the light quark spin
assignment can be tested by the ratio of BB̄, BB̄∗ and B∗B̄∗ decays.

We now consider decays from a heavier quarkonium state to a lighter such
state (with both intial and final quarkonia in the most-symmetric gluonic Σ+

g

representation) with emission of a light quark-antiquark pair which form a
flavour-singlet meson. This flavour singlet meson must be produced with CP
even and Jz = 0 again. Possible modes are a scalar meson or a vector meson
with Sz = 0 which are both allowed in a symmetric spatial state. Note that
decay to a pseudoscalar meson is not allowed since the required spatial wave-
function would have to be in a Σ+

u representation but this is not realisable for
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a meson with no spin.
The spin nature of the quark-antiquark pair produced in hadronic decays

has been widely discussed [5]. A colour-singlet light quark-antiquark pair can
be produced from colour flux oriented in the z-direction with vacuum quan-
tum numbers (CP = +1, Jz = 0, flavour singlet) either as a scalar meson
(3P0 model) or as the zero-helicity component of a vector meson (3S1 model).
The lattice study of flavour singlet mesons suggests that the former is a much
larger [6] amplitude in general. In any specific case, however, the amplitudes
can be determined explicitly, and this we undertake for hybrid decays.

For the JPC = 1−+ hybrid we have a gluonic field with Jz = 1 and odd CP .
For the case of decay to a (Qq̄)(Q̄q) with each heavy-light meson having L = 0,
this would imply that the qq̄ would have to be produced with Jz = 1 and odd
CP . This is not possible since the triplet state would have even CP while the
singlet state cannot have Jz = 1. This is then equivalent to the selection rule
described above. There will presumably be small corrections to this selection
rule coming from retardation effects. Decay to (Qq̄)(Q̄q) with one heavy-light
meson having a non-zero orbital excitation is allowed from symmetry but is
not allowed energetically with conventional mass assignments [7] for the P-wave
excited B meson multiplet.

Decays of a hybrid meson to (QQ̄)(qq̄) are also possible since there is enough
excitation energy to create a light quark meson. This meson must be created in a
flavour singlet state and the lightest candidates are η, ω and scalar (S) channels.
In a lattice context, this production is via a disconnected quark loop while the
normalisation of the meson will involve the connected correlator. Thus the rel-
ative strength of the disconnected correlator to the connected correlator enters
and this has been studied for different meson quantum numbers on a lattice [6].
As expected from the phenomenology of meson spectra, the pseudoscalar and
scalar mesons are the only two cases with relatively large disconnected contribu-
tions. For pseudoscalar mesons, the flavour singlet mixture of η and η′ is mainly
η′ with only an amplitude of sin(100) of η for the conventional mixing scheme
(see [8]). For the scalar meson, the discrete states coming from mixing of the
glueball and qq̄ meson are relatively heavy so may not be allowed from energy
considerations, but one should also consider the ππ continuum with favour sin-
glet and scalar quantum numbers, which is experimentally known to be big (ie
have large ππ phase shift) around 700 MeV.

In these decays from a hybrid meson with Πu representation to a de-excited
string with Σ+

g representation, the light quark meson must have a wavefunction
with a net Πu representation with Jz = 1 and CP = −1. If this meson has
an angular momentum of L about the final state heavy-heavy meson, then this
implies that the orbital wave function has Lz ≤ L and CP = (−1)L. Using
this orbital angular momentum, then allows the decay products from the decay
of a JPC = 1−+ meson to be identified. Thus in the static limit the decays
allowed by symmetry for a Πu representation hybrid to a Σ+

g representation
state plus flavour-singlet meson are shown in Table. 1. The examples shown
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take account of the adiabatic approximation and the nature of the JPC = 1−+

hybrid wavefunction.

Meson JPC wave fn. Lz CP L Example
η, η′ 0−+ Πg 1 + 2 Hybrid → χb + η
scalar 0++ Πu 1 - 1 Hybrid → χb + π + π

Table 1: Hybrid decays by string de-excitation in the heavy quark limit emitting
a flavour singlet light quark-antiquark meson with quantum numbers JPC . This
meson has a wavefunction relative to the heavy quark-antiquark system in the
representation shown with Lz and CP as shown. This implies that it is in an
orbital L-wave about the heavy quark system.

As for the case of quarkonium decays and string breaking [9, 10], it is possible
in principle to explore on the lattice some aspects of these hybrid meson decays.
One can study matrix elements between ground states which are degenerate in
energy such as the 1−+ hybrid and the χbη final state where the light quark
mass is adjusted so that there is equal energy in both systems. This and similar
lattice studies will enable some further guidance to be given for experimental
searches for hybrid mesons.

4 Decays from the lattice

Consider the generic transition H → A + B where A and B represent stable
particles and H is unstable to decay. Here we assume that the two-body state
has exactly all the symmetries of the state H . For simplicity we will consider
H at rest and then A and B have momenta k and −k respectively. Thus the
two-body state, if non-interacting, has energy EAB =

√
mA + k2 +

√
mB + k2.

In Euclidean time, the properties of this decay transition are very different in
practice [11] from the Minkowski case, in particular the large time correlator will
be dominated by the lightest two-body state which will be that with minimum
momentum.

One way to explore this system in detail is to consider a finite volume.
We make the usual assumption that the theory is defined independently of the
boundary conditions. From the lattice viewpoint, the finite volume result can
be obtained by taking the continuum limit at fixed physical volume. For a cubic
spatial volume L3 with periodic boundary conditions, the momenta are discrete
(k = 2πn/L) where n = (n1, n2, n3) is an integer vector. The two-body states
are then also discrete in energy. One expects that as L increases beyond the
range of the two body interaction, the two body energy levels become close to the
non-interacting case. This has been studied [12] and detailed formulae obtained
for the energy shifts at sufficiently large L in terms of the scattering phase shift in
the A+B system, provided inelasticity is negligible. This allows, in principle, to
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measure the phase shift at various energies by varying L and n. From the phase
shift one can then deduce the properties of the decay in the large volume limit.
To measure the lightest two-body state accurately (typically with n = (1, 0, 0))
is already a challenge and to obtain accurate energy determinations for excited
states with higher momentum will be much harder. Moreover, in practice the
energy shifts are small and so it will be extremely difficult to measure accurately
the phase shifts on a lattice [13].

For some applications, it is possible to measure the transition amplitude
directly. This is clearly the case in a quenched (or partially quenched) approach
where the decay transition does not actually take place in the lattice version
of the theory. For example, the ρ meson does not decay to π + π in quenched
studies. Let us describe how this can be measured in principle: Create H at
t = 0 and annihilate a two-body state with relative momenta k and −k at time
t. Then the contribution to the correlator from a H state with mass mH and a
two-body state with energy EAB is given by

CH−AB(t) =
∑

t1

he−mHt1xe−EAB(t−t1)b (1)

where the summation over the intermediate t-value t1 will be an integral in the
continuum and where h and b are the amplitudes to make each state from the
lattice operators used and x is the required transition amplitude 〈H |AB〉. Here
we are assuming that the states H and AB are normalised to 1. By obtaining
h and b from the H → H and AB → AB correlators, one can hope [9, 14] to
extract x.

The complication, however, is that removal of excited state contributions
is tricky. For example, if mH − EAB > 0 then the transition time t1 will be
preferentially near 0 (since the heavier state then propagates less far in time)
and one can complete the sum over t1 obtaining a t-dependence of eq. 1 as
e−EABt. This same t-dependence would be obtained if the state with mass mH

were to be replaced with an excited state with an even heavier mass. Thus
one cannot separate the ground state and excited state contributions even in
principle. See ref. [14] for a fuller discussion.

The way forward is that if mH = EAB, the ground state contributions have
a t-dependence as te−EABt whereas any excited state contributions behave as
e−EABt as above. So now we do have a way to isolate the required ground state
contribution:

x = lim
t→∞

1

t

CH−AB(t)

[CH−H(t) CAB−AB(t)]1/2
(2)

Note that this separation is only by a power of t which is less than the case
for diagonal correlations where the excited state contributions are suppressed
by an exponential e(m′

H−mH)t.
In practice the requirement of energy equality can be relaxed. Defining

∆ = mH − EAB, then the ground state contribution to the expression of eq. 2
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evaluates to 2x sinh(t∆/2)/(t∆) = x(1 + (t∆)2/24 + . . .). So this will be equiv-
alent to the expression with ∆ = 0 provided

(mH − EAB)t << 5 (3)

So far we have described the behaviour of the CH−AB(t) in the quenched
approximation. In full QCD, there will be a mixing of these two states. Let us
illustrate this for the case of interest where the energies are approximately the
same (namely E). Then the energy mixing matrix has the form

(

E x
x E

)

(4)

which has eigenvalues E ± x. An accurate measurement of these energy eigen-
states would then give the transition amplitude x. If x is numerically small, it
is actually possible to follow an approach similar to that described above for
the quenched approximation. Namely, if x is small, one can work to a given
low order in x. Then provided eq. 3 is satisfied, to first order in x, we again
find that CH−AB(t) will have a contribution with a t-dependence behaving as
xte−EABt from eq. 1 just as described above. As well as further transitions and
corrections from the mixing energy shifts which will both be of higher order
in xt, one must also consider the intrinsic mixing of the initial H state with
AB (and vice versa). This intrinsic mixing (ie not the mixing induced by the
propagation from the energy matrix of eq. 4 - see fig. 2 for an illustration of a
typical contribution) is expected be of order x/E where E is the energy of the
quark pair and so will contribute a term like xe−Et/E . This is a contribution
similar to that from excited states and so will be dominated at large t by the
xte−Et term we are looking for. So we need both xt to be small and t to be
large. This implies that x must be small for this simplified approach.

We now discuss whether x is generically small. Provided the ranges of the
interactions between A and B and between H and AB are effectively finite and
smaller than the spatial extent L, then the transition probability x2 will be
proportional to 1/L3 and hence the transition amplitude x behaves as 1/L3/2.
As L is increased, the different momentum states of A+B become closer together
in energy and the density of states behaves like L3. Hence the net transition
probability to states close to a given momentum will be independent of L at large
L as expected. Thus we conclude that x is indeed small at large volume but
that off diagonal transitions between different momentum states will become
important. Thus at large volume there will be many small x’s to take into
account.

So a practical method will be possible if the lowest energy AB state that
couples to H has a similar energy to H . This lowest energy state will have
relative momentum n = 0 for S-wave decays and n = (1, 0, 0) for P-wave
decays etc. By adjusting the lattice volume and quark mass, it may be possible
to arrange for approximate energy equality: this is often called an on-shell
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Figure 2: Light quark pair production (wiggly lines) for the three point func-
tion H → A + B in Euclidean time (running horizontally). The straight lines
represent quarks which may be heavy or light. The left hand diagram has the
interpretation of a transition (our x) at an intermediate time while the right
hand diagram can be thought of as some intrinsic mixing in the H state.

transition. From studying the correlations as above, one can then extract the
transition amplitude x. One example was to explore glueball decay to two
pseudoscalar mesons in the quenched approximation [15].

A careful discussion of the matching [16] between finite volume and infinite
volume relies on a quantitative treatment of the interactions between the two
bodies (A+B). In our treatment, we are neglecting this interaction, so one can
obtain the matching directly from phase space considerations [11, 15]. The key
step is that we are normalising the states H , A and B to one. Then the density
of A + B states in energy is given from E(n) =

√

m2
A + k2 +

√

m2
B + k2 with

k = 2πn/L. In our application here, we shall treat mA as infinite so the density
of states ρ(E) = 4πn2dn/dE = L3kEB/(2π2). Then first order perturbation
theory (Fermi’s Golden Rule) implies a transition rate Γ = 2πx2ρ(E). Here we
explicitly see the factor of L3 from the density of states cancelling the implicit
factor of L−3/2 in x. At first sight the fact that the density of states is rather
sparse in a finite volume is worrying [17] - but the matching is done at the level
of the transition amplitude so the density of states is needed in a large volume
only.

In conclusion, we are able to evaluate the transition amplitude x on a lattice
when EH ≈ EA+EB for momentum k which is the minimum lattice momentum
at that finite volume, provided

(EH − EA − EB)t << 5, xt << 1, and (E′ − E)t >> 1 (5)

where E′−E is the energy gap to an excited state. Then we use this lattice result
to determine the large volume physical decay rate where k is the momentum of
the decay product.
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5 Lattice transition matrix element

5.1 Energies

Here we use 207 dynamical fermion configurations [18] with Nf = 2 flavours
of sea-quark with masses around the strange quark mass (κ=0.1355 with NP
improved clover having CSW = 2.02 at β = 5.2 for a 163 32 lattice, with lattice
spacing given by r0/a = 5.04(4) which corresponds to a of around 0.1 fm).

We are interested in the heavy quark limit so we evaluate the usual static
potential (A1g) and the excited-gluonic potential which corresponds to the Eu

representation. Results are shown in fig. 1.
We can now evaluate the energy release at each value of R and compare it

with known flavour-singlet meson masses. We are interested in the minimum
momentum allowed which will be n = (1, 0, 0) for the scalar meson emission
and n = (1, 1, 0) for the pseudoscalar emission. We can evaluate the energies of
these states with non-zero momentum by assuming the usual energy-momentum
relationship and taking the masses as determined on a lattice [18]. We also
check these energy estimates from our results here. For example from the pion
mass am = 0.294(4) and flavour singlet mass enhancement of around 0.06 one
gets aE(110) = 0.66 for this pseudoscalar state. For the scalar meson am =
0.628(30) implying aE(100)=0.74(3) for this scalar state. These two energy
values are comparable with the energy release for R values of around 0.2 fm -
see fig. 1 where this is illustrated for the scalar meson emission.

5.2 Transitions

We now discuss the transition matrix elements in the heavy quark limit where
the quarkonia states will be accurately treated by the static approximation.
We then discuss the creation of the light quark antiquark pair which form the
flavour singlet meson. In particular we discuss how to create operators for the
Eu, A1g + S(0++), and A1g + η states.

Let the static quarks be separated by R in the z-direction with the mid-
point at r. Then under rotations about the z-axis we have a two-dimensional
representation (like Jz = 1). These two states correspond to flux states from
a lattice operator which is the difference of U-shaped paths from quark to an-
tiquark of the form ⊓ − ⊔ where the transverse extent can be in the x or y
direction respectively.

For the ground state (A1g on a lattice) we take a straight path from the
static quark to antiquark. Then we need to discuss the spatial distribution of
the light quark meson with respect to the static quarks. We have to ensure that
the initial and final states are in the same representation of the symmetries of
the heavy quark state. This can be achieved by constructing the two body state
using the lattice operator
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O(r) =
∑

s

a(r)M(s)w(s, r) (6)

where a represents the colour field in the z-direction from r−ezR/2 to r+ezR/2
and w is the distribution function of the flavour singlet meson operator M
(which will be either a pseudoscalar or scalar meson). Because of translational
invariance, we can express this meson distribution function w most efficiently
in momentum space:

w(s, r) =
∑

k

eik(r−s)w(k) (7)

The symmetries of w(r, s) depend on those of the meson produced. For scalar
meson production (with JPC = 0++), then w(s, r) is in an Eu representation
and this can be achieved by making w(k) odd in kx and even in ky and kz where
x is the direction of transverse extent of the Eu state described above.

For pseudoscalar meson production (which has CP = −1), then w(r, s) is in
an Eg representation and this can be achieved by making w(k) odd in ky and kz

and even in kx. Another way to see that this is the correct symmetry configu-
ration is from considering space inversions, since Px, Py and CPz are conserved
in the transition. Now consider the Eu representation which is odd under Px

and even under Py and CPz , while the η operator, being pseudoscalar, is odd
under all three operations. The A1g operator is even under all three operations,
so we need to introduce a wavefunction w which is odd under inversions Py and
Pz (since C = +1 for the η) and even under Px.

In practice we evaluate the difference of two Wilson loops corresponding to
creating the Eu state at r, t with transverse extent in the x and −x directions
and annihilating the A1g state at r, t + T . Let us call this observable Æ(r)
and its spatial Fourier transform Æ(q). The disconnected fermion loop (from
operator η = q̄γ5q for pseudoscalar mesons or S = q̄q for scalar mesons) is
evaluated at each spatial point s at time t + T and its Fourier transform is
M(p) corresponding to η(p) or S(p). Then the required correlation is given
after summing over r as

∑

k

w(k)Æ(−k)M(k) (8)

Here Æ represents a Wilson loop which has a zero expectation on its own
since it has an Eu state at one end and an A1g state at the other end in time,
and M represents a fermionic disconnected loop with non-zero momentum which
also has a zero expectation value on its own. Here M is evaluated by stochastic
methods [14]. The product of these two operators is constructed to have a
non-zero expectation value and that is the target of this investigation. We
actually used fuzzed sources for the spatial ends of Æ (2 or 13 iterations of
U → P(cUStraight +

∑

UStaples) with c = 2.5 for the A1g end but only the higher
iteration level for the Eu end) and different sizes (1 or 2 lattice spacings) for
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the transverse extent of the Eu end while we use fuzzed and local fermionic
operators for the light-quark meson.

We have here described the correlation in terms of a specific orientation of
the static quark separation and of the transverse extent of the Eu state. On a
lattice we sum over all cubic rotations, translations and reflections to increase
statistics.

5.2.1 Pseudoscalar decays

For pseudoscalar decays, since w(k) is odd in both ky and in kz , these momenta
must be non-zero. The simplest assumption which corresponds to the lightest
allowed state, is used in this exploratory study; namely, that nx = 0, ny = ±1
and nz = ±1 where the lattice momentum k = 2nπ/L. In terms of these
components of the momentum, the required correlation is

2ℜ(Æ(0, 1, 1)η(0,−1,−1)− Æ(0, 1,−1)η(0,−1, 1) (9)

which we evaluate as (here cc means cos transform in y and z, etc.).

4(−Æccηss − Æssηcc + Æscηcs + Æcsηsc) (10)

Note that η(s) is real for Wilson-like fermion formalisms - so we take the real
part of the stochastic estimate, while Æ(r) is complex since the Wilson loop in
SU(3) has an orientation, but η has even charge conjugation so we need to take
the real part here also.

For this minimum momentum, we have energy equality at R = 2a.
Following eq. 2, we normalise states to 1 and evaluate the transition matrix

element x = 〈H |Aη〉 from the ratio at each t value

xt =
CH−Aη(t)

(CA−A(t)CH−H(t)Cη−η(t))1/2
(11)

where we have neglected interactions in the Aη two body state so have used for
its correlator the direct product of the A and η propagation. This amounts to
neglecting the correlation between the R × t Wilson loop giving CA−A(t) and
the η correlator involving light quarks, so that

CAη−Aη(t) = CA−A(t)Cη−η(t) (12)

Here the Cη−η(t) contribution includes the connected and disconnected contri-
butions to the η propagation.

We obtain no signal for the ratio of eq. 11 which curtails our investigation.
We can obtain limits, however. For instance at R = 2a and at t = 1, a value
xt = 0 ± 0.0009 is obtained. This can be turned into a limit on this transition
rate of Γ < 1 MeV. Note that this value is for quarks of strange mass, at R = 0.2
fm so with no account of wavefunction effects, for Nf = 2 with no account of
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η, η′ mixing, with no account of excited state contamination and without any
continuum limit. Because of the lack of any signal, we are unable to pursue
these corrections and extrapolations. Perhaps the most useful conclusion is
that this transition appears weak, maybe because it is a D-wave and so involves
cancellations between different spatial components of the η wave function.

5.2.2 Scalar decays

For scalar decays, since w(k) is odd in kx, this momentum must be non-zero.
The simplest assumption which corresponds to the lightest allowed state, is used
in this exploratory study; namely, that nx = ±1, ny = 0 and nz = 0. For this
minimum momentum, we have energy equality in the transition at R = 2a - see
fig. 1. In terms of these components of the momentum, the required correlation
is

ℑ(Æ(1, 0, 0)S(−1, 0, 0)− Æ(−1, 0, 0)S(1, 0, 0)) (13)

which we evaluate as (here c means cos transform in x, etc.).

2ℜ(−ÆcSs + ÆsSc) (14)

We evaluate the ratio at each t value

xt =
CH−AS(t)

(CA−A(t)CH−H(t)CS−S(t))1/2
(15)

where the scalar propagation in CS−S(t) again involves both connected and
disconnected contributions. In this case we do obtain a signal and the values of
x extracted are shown in fig. 3. Moreover we do see good evidence for a linear
dependence on t as needed to ensure excited state contributions are removed.
This linear dependence sets in from very small t-values which may be explained
if the off-diagonal transition matrix elements (ie the corresponding x-values for
the transition from excited state to ground state) are small compared to the
diagonal case. From the slope we can extract x obtaining ax = 0.009(1) at
R = 2a. This is indeed a small value and our assumptions about using the three
point function analysis are thus fully justified. It would indeed be very difficult
to detect directly the shift of ±0.01 in the aE-values of fig. 1 arising from this
mixing where the two levels cross at R ≈ 0.2 fm.

Using this x-value and an energy release of aE = 0.73, we obtain a transition
rate of Γ = 0.061(14) GeV. Note that this result is at a fixed R-value (0.2 fm),
for strange quarks and with no continuum limit.

Although we are only able to evaluate x at one R-value in principle (where
we have energy equality) in this study, we can explore other R values where the
energy equality is only approximate. Indeed since the energy difference increases
to only a∆ ≈ 0.35 at R = 6/a, we find that the criterion of approximate energy
equality (eq. 3) is met for the range of t-values considered here. Moreover,
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Figure 3: The transition matrix element xt for H → AS with momentum
n = (1, 0, 0) versus t. Here R = 0.1 to 0.6 fm is represented by symbols: fancy
star, diamond, +, octagon, ×, square. The line represents a linear fit to the
R = 0.2 fm case.

we do find for R-values from a to 6a, that the correlator ratio of eq. 15 is
consistent with linear in t over the range of t from a to 5a. Thus we can
still estimate the x-values by a linear fit in t, with the understanding that
excited state effects may be less completely removed. We find an increase of
x with R (see fig. 3) with some sign of a saturation at large R (namely fit
values of ax = 0.005(1), 0.009(1), 0.012(1), 0.013(2), 0.015(2), 0.017(2) at
R = 0.1, . . .0.6 fm, respectively). Since the transition to the scalar meson with
momentum k is a P-wave, one would expect the transition amplitude to have
a factor of k. However, we are working at a fixed volume, so the minimum
momentum k is fixed as R varies. Thus although the energy release varies with
R, we have a fixed momentum k and hence this consideration should not affect
the dependence of x on R.

One way to interpret the R-dependence of x is by noting that the scalar
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meson wavefunction has a node at the centre of the Eu state in the transverse
direction (since w is odd in relative transverse spatial coordinate) and so it is
sensitive to the transverse width of the excited gluonic flux in the Eu state.
This increases [19] with longitudinal extent R and then starts to saturate, just
as we find.

5.3 Phenomenology

In the extreme heavy quark limit, the heavy quarks are static and one can
define a transition rate for each separation R. Also there will be a well defined
energy release for each value of R: for example at R = 2a = 0.2 fm we find
EEu

− EA1g
= 0.73(1)/a = 1.4 GeV. The energy of the scalar meson with

the required momentum we take as aE(100) = 0.74(3) and we also check that
this energy is consistent with the value we find directly from fitting our scalar
correlators with this momentum (namely aE(100) ≈ 0.7). Thus indeed we are
close to on-shell as required. In the real world, the quarks are bound and there
is a distribution of R-values as given by the wave functions. For b quarks, as
discussed previously, the static potentials allow us to estimate the quark wave
functions. The hybrid wave function is effectively P-wave and actually has a
quite large overlap with the χb wave function (the overlap peaks at around 0.4
fm and the wave-function overlap integrated over all R gives a factor of 0.63 in
the transition rate assuming x is independent of R). The energy release from
the hybrid meson [1] at 10.76(7) GeV to the χb state at 9.893 GeV will be 0.87
GeV which is similar to the value at fixed R with R ≈ 0.4 fm. Thus there is a
mismatch in the energy release we study on the lattice (1.4 GeV) and that in
experiment (0.9 GeV). Note that this issue could be very important: the decay
rate will be proportional to k3, so a small change of energy release will have a
big effect on k and an even bigger effect on the rate. Put more bluntly: there
will be no decay to a scalar meson heavier than 870 MeV in practice, but our
estimates for the scalar meson mass are indeed heavier than this. Thus we will
need some method to treat the virtual (below threshold) production of a scalar
meson which subsequently decays to two pions. We discuss this in the context
of the quark mass dependence.

We are evaluating the transition matrix element for quarks of mass about
strange. At this quark mass on our lattice the scalar meson (mass ma = 0.63)
is already unstable to decay to two pions (mass ma = 0.29 each) in an S-wave.
Thus we should consider, in principle, a further layer of sophistication: the
sequential decay of the scalar meson to two pions. This decay will become even
more significant as the quark mass is reduced further towards the physical case.
Moreover it will allow scalar π + π states to be produced even if the available
energy is less than the mass of a scalar meson as discussed above. Thus we do
not attempt a naive extrapolation to light quarks of realistic mass. A study of
the three body final state will be needed to resolve this issue more completely.

We could also study, in principle, the transition for higher momentum, for
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example S having momentum (1, 1, 0)2π/L with energy aE(110) = 0.85(4), but
then energy equality between initial and final states would be at even smaller
R-values. Also this higher energy state would be coupled to the lighter aE(100)
state we have explored above and this would make the extraction from the
lattice more prone to systematic errors.

Another possible avenue would be to vary the lattice spatial size L. This is
not feasible with our current dynamical data set but is of interest for the future.

Without making a detailed study of the sequential decay of the scalar meson
to two pions, our estimates of the decay rate will be qualitative. We find a
rate of 61(14) MeV for the unphysical case of a transition at R = 0.2 fm with
strange quarks in the scalar meson. At the more realistic value (where the wave
function overlap peaks) of R = 0.4 fm, we have a larger transition amplitude
ax = 0.013(2) but the energy release is insufficient for decay to an on-shell scalar
meson. Including the wavefunction overlap factor of 0.63, we conclude that the
decay rate to a scalar channel will be less than 80 MeV (here the upper limit
is from assuming that the scalar meson is produced off-shell with momentum
k = 2π/L at R≈ 0.4 fm).

Flux-tube models have been used to estimate hybrid decay widths [20]. For
bb̄ hybrid mesons, they only consider decays to BB and B∗B and these decay
rates are found to be very small (less than 1 MeV).

6 Conclusions

We have presented arguments that, in the heavy quark limit, the decay of a
JPC = 1−+ spin-exotic hybrid meson will be primarily through flavour singlet
light quark-antiquark emission.

We have explored in lattice QCD with Nf = 2 flavours of sea quark (with
mass near that of the strange quark) the transition between an excited gluonic
state with heavy quarks at separation R and a ground state gluonic system
with a flavour-singlet light quark-antiquark pair emitted. We find a very weak
transition amplitude for emission of a pseudoscalar meson but a much larger
rate for a scalar meson.

On a lattice it is only possible to extract a limited set of information: namely
when there is an on-shell transition in the finite volume used. Our raw lattice
results are a transition width of less than 1 MeV for the pseudoscalar case and
61(14) MeV for the scalar case. These results are for transitions at fixed R ≈ 0.2
fm in the heavy quark limit, for light quarks that are of strange mass.

For b quarks the relevant transitions will be H → χbη and H → χbS. We
argue that wave function effects will suppress these decay rates rather little (a
factor of 0.6) while the choice of a more appropriate R-value (of 0.4 fm) will
increase the rates. This yields an off-shell decay rate to a scalar meson of around
80 MeV which can be regarded as an upper limit. The main uncertainty comes
from the sensitive dependence (like k3) of the rate on the energy release and
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the complications caused by the subsequent decay of the scalar meson to two
pions. More work needs to be done to build phenomenological models of scalar
meson production and decay and, eventually, to explore the transition to two
pions directly on the lattice.

Despite this, we consider that first principles QCD evaluation of these hadronic
transitions is a very valuable component of a phenomenological study of hybrid
decays. Our results are consistent with the expectation that these spin-exotic
hybrid meson states are relatively narrow and hence will be detectable exper-
imentally. We have not evaluated decay processes that are not allowed in the
heavy quark limit (such as retardation effects or heavy quark spin-flip) and it
would be valuable to investigate them to ensure that they are indeed negligible
compared to the string de-exitation decay that we find to be important.
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